
This includes much improved GPU rendering performance, viewport interactivity, new shadow catcher, revamped sampling settings, subsurface scattering anisotropy, new GPU volume sampling, improved PMJ sampling pattern, and more. Some features have also been removed or changed, breaking backwards compatibility. Including the removal of the OpenCL backend, for which alternatives are under development. Release notes and code docs: https://wiki.blender.org/wiki/Reference/Release_Notes/3.0/Cycles https://wiki.blender.org/wiki/Source/Render/Cycles Credits: * Sergey Sharybin * Brecht Van Lommel * Patrick Mours (OptiX backend) * Christophe Hery (subsurface scattering anisotropy) * William Leeson (PMJ sampling pattern) * Alaska (various fixes and tweaks) * Thomas Dinges (various fixes) For the full commit history, see the cycles-x branch. This squashes together all the changes since intermediate changes would often fail building or tests. Ref T87839, T87837, T87836 Fixes T90734, T89353, T80267, T80267, T77185, T69800
242 lines
8.1 KiB
C
242 lines
8.1 KiB
C
/*
|
|
* Copyright 2011-2014 Blender Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
/*
|
|
* ASHIKHMIN SHIRLEY BSDF
|
|
*
|
|
* Implementation of
|
|
* Michael Ashikhmin and Peter Shirley: "An Anisotropic Phong BRDF Model" (2000)
|
|
*
|
|
* The Fresnel factor is missing to get a separable bsdf (intensity*color), as is
|
|
* the case with all other microfacet-based BSDF implementations in Cycles.
|
|
*
|
|
* Other than that, the implementation directly follows the paper.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
ccl_device int bsdf_ashikhmin_shirley_setup(MicrofacetBsdf *bsdf)
|
|
{
|
|
bsdf->alpha_x = clamp(bsdf->alpha_x, 1e-4f, 1.0f);
|
|
bsdf->alpha_y = clamp(bsdf->alpha_y, 1e-4f, 1.0f);
|
|
|
|
bsdf->type = CLOSURE_BSDF_ASHIKHMIN_SHIRLEY_ID;
|
|
return SD_BSDF | SD_BSDF_HAS_EVAL;
|
|
}
|
|
|
|
ccl_device void bsdf_ashikhmin_shirley_blur(ShaderClosure *sc, float roughness)
|
|
{
|
|
MicrofacetBsdf *bsdf = (MicrofacetBsdf *)sc;
|
|
|
|
bsdf->alpha_x = fmaxf(roughness, bsdf->alpha_x);
|
|
bsdf->alpha_y = fmaxf(roughness, bsdf->alpha_y);
|
|
}
|
|
|
|
ccl_device_inline float bsdf_ashikhmin_shirley_roughness_to_exponent(float roughness)
|
|
{
|
|
return 2.0f / (roughness * roughness) - 2.0f;
|
|
}
|
|
|
|
ccl_device_forceinline float3 bsdf_ashikhmin_shirley_eval_reflect(const ShaderClosure *sc,
|
|
const float3 I,
|
|
const float3 omega_in,
|
|
float *pdf)
|
|
{
|
|
const MicrofacetBsdf *bsdf = (const MicrofacetBsdf *)sc;
|
|
float3 N = bsdf->N;
|
|
|
|
float NdotI = dot(N, I); /* in Cycles/OSL convention I is omega_out */
|
|
float NdotO = dot(N, omega_in); /* and consequently we use for O omaga_in ;) */
|
|
|
|
float out = 0.0f;
|
|
|
|
if (fmaxf(bsdf->alpha_x, bsdf->alpha_y) <= 1e-4f)
|
|
return make_float3(0.0f, 0.0f, 0.0f);
|
|
|
|
if (NdotI > 0.0f && NdotO > 0.0f) {
|
|
NdotI = fmaxf(NdotI, 1e-6f);
|
|
NdotO = fmaxf(NdotO, 1e-6f);
|
|
float3 H = normalize(omega_in + I);
|
|
float HdotI = fmaxf(fabsf(dot(H, I)), 1e-6f);
|
|
float HdotN = fmaxf(dot(H, N), 1e-6f);
|
|
|
|
/* pump from original paper
|
|
* (first derivative disc., but cancels the HdotI in the pdf nicely) */
|
|
float pump = 1.0f / fmaxf(1e-6f, (HdotI * fmaxf(NdotO, NdotI)));
|
|
/* pump from d-brdf paper */
|
|
/*float pump = 1.0f / fmaxf(1e-4f, ((NdotO + NdotI) * (NdotO*NdotI))); */
|
|
|
|
float n_x = bsdf_ashikhmin_shirley_roughness_to_exponent(bsdf->alpha_x);
|
|
float n_y = bsdf_ashikhmin_shirley_roughness_to_exponent(bsdf->alpha_y);
|
|
|
|
if (n_x == n_y) {
|
|
/* isotropic */
|
|
float e = n_x;
|
|
float lobe = powf(HdotN, e);
|
|
float norm = (n_x + 1.0f) / (8.0f * M_PI_F);
|
|
|
|
out = NdotO * norm * lobe * pump;
|
|
/* this is p_h / 4(H.I) (conversion from 'wh measure' to 'wi measure', eq. 8 in paper). */
|
|
*pdf = norm * lobe / HdotI;
|
|
}
|
|
else {
|
|
/* anisotropic */
|
|
float3 X, Y;
|
|
make_orthonormals_tangent(N, bsdf->T, &X, &Y);
|
|
|
|
float HdotX = dot(H, X);
|
|
float HdotY = dot(H, Y);
|
|
float lobe;
|
|
if (HdotN < 1.0f) {
|
|
float e = (n_x * HdotX * HdotX + n_y * HdotY * HdotY) / (1.0f - HdotN * HdotN);
|
|
lobe = powf(HdotN, e);
|
|
}
|
|
else {
|
|
lobe = 1.0f;
|
|
}
|
|
float norm = sqrtf((n_x + 1.0f) * (n_y + 1.0f)) / (8.0f * M_PI_F);
|
|
|
|
out = NdotO * norm * lobe * pump;
|
|
*pdf = norm * lobe / HdotI;
|
|
}
|
|
}
|
|
|
|
return make_float3(out, out, out);
|
|
}
|
|
|
|
ccl_device float3 bsdf_ashikhmin_shirley_eval_transmit(const ShaderClosure *sc,
|
|
const float3 I,
|
|
const float3 omega_in,
|
|
float *pdf)
|
|
{
|
|
return make_float3(0.0f, 0.0f, 0.0f);
|
|
}
|
|
|
|
ccl_device_inline void bsdf_ashikhmin_shirley_sample_first_quadrant(
|
|
float n_x, float n_y, float randu, float randv, float *phi, float *cos_theta)
|
|
{
|
|
*phi = atanf(sqrtf((n_x + 1.0f) / (n_y + 1.0f)) * tanf(M_PI_2_F * randu));
|
|
float cos_phi = cosf(*phi);
|
|
float sin_phi = sinf(*phi);
|
|
*cos_theta = powf(randv, 1.0f / (n_x * cos_phi * cos_phi + n_y * sin_phi * sin_phi + 1.0f));
|
|
}
|
|
|
|
ccl_device int bsdf_ashikhmin_shirley_sample(const ShaderClosure *sc,
|
|
float3 Ng,
|
|
float3 I,
|
|
float3 dIdx,
|
|
float3 dIdy,
|
|
float randu,
|
|
float randv,
|
|
float3 *eval,
|
|
float3 *omega_in,
|
|
float3 *domega_in_dx,
|
|
float3 *domega_in_dy,
|
|
float *pdf)
|
|
{
|
|
const MicrofacetBsdf *bsdf = (const MicrofacetBsdf *)sc;
|
|
float3 N = bsdf->N;
|
|
int label = LABEL_REFLECT | LABEL_GLOSSY;
|
|
|
|
float NdotI = dot(N, I);
|
|
if (NdotI > 0.0f) {
|
|
|
|
float n_x = bsdf_ashikhmin_shirley_roughness_to_exponent(bsdf->alpha_x);
|
|
float n_y = bsdf_ashikhmin_shirley_roughness_to_exponent(bsdf->alpha_y);
|
|
|
|
/* get x,y basis on the surface for anisotropy */
|
|
float3 X, Y;
|
|
|
|
if (n_x == n_y)
|
|
make_orthonormals(N, &X, &Y);
|
|
else
|
|
make_orthonormals_tangent(N, bsdf->T, &X, &Y);
|
|
|
|
/* sample spherical coords for h in tangent space */
|
|
float phi;
|
|
float cos_theta;
|
|
if (n_x == n_y) {
|
|
/* isotropic sampling */
|
|
phi = M_2PI_F * randu;
|
|
cos_theta = powf(randv, 1.0f / (n_x + 1.0f));
|
|
}
|
|
else {
|
|
/* anisotropic sampling */
|
|
if (randu < 0.25f) { /* first quadrant */
|
|
float remapped_randu = 4.0f * randu;
|
|
bsdf_ashikhmin_shirley_sample_first_quadrant(
|
|
n_x, n_y, remapped_randu, randv, &phi, &cos_theta);
|
|
}
|
|
else if (randu < 0.5f) { /* second quadrant */
|
|
float remapped_randu = 4.0f * (.5f - randu);
|
|
bsdf_ashikhmin_shirley_sample_first_quadrant(
|
|
n_x, n_y, remapped_randu, randv, &phi, &cos_theta);
|
|
phi = M_PI_F - phi;
|
|
}
|
|
else if (randu < 0.75f) { /* third quadrant */
|
|
float remapped_randu = 4.0f * (randu - 0.5f);
|
|
bsdf_ashikhmin_shirley_sample_first_quadrant(
|
|
n_x, n_y, remapped_randu, randv, &phi, &cos_theta);
|
|
phi = M_PI_F + phi;
|
|
}
|
|
else { /* fourth quadrant */
|
|
float remapped_randu = 4.0f * (1.0f - randu);
|
|
bsdf_ashikhmin_shirley_sample_first_quadrant(
|
|
n_x, n_y, remapped_randu, randv, &phi, &cos_theta);
|
|
phi = 2.0f * M_PI_F - phi;
|
|
}
|
|
}
|
|
|
|
/* get half vector in tangent space */
|
|
float sin_theta = sqrtf(fmaxf(0.0f, 1.0f - cos_theta * cos_theta));
|
|
float cos_phi = cosf(phi);
|
|
float sin_phi = sinf(phi); /* no sqrt(1-cos^2) here b/c it causes artifacts */
|
|
float3 h = make_float3(sin_theta * cos_phi, sin_theta * sin_phi, cos_theta);
|
|
|
|
/* half vector to world space */
|
|
float3 H = h.x * X + h.y * Y + h.z * N;
|
|
float HdotI = dot(H, I);
|
|
if (HdotI < 0.0f)
|
|
H = -H;
|
|
|
|
/* reflect I on H to get omega_in */
|
|
*omega_in = -I + (2.0f * HdotI) * H;
|
|
|
|
if (fmaxf(bsdf->alpha_x, bsdf->alpha_y) <= 1e-4f) {
|
|
/* Some high number for MIS. */
|
|
*pdf = 1e6f;
|
|
*eval = make_float3(1e6f, 1e6f, 1e6f);
|
|
label = LABEL_REFLECT | LABEL_SINGULAR;
|
|
}
|
|
else {
|
|
/* leave the rest to eval_reflect */
|
|
*eval = bsdf_ashikhmin_shirley_eval_reflect(sc, I, *omega_in, pdf);
|
|
}
|
|
|
|
#ifdef __RAY_DIFFERENTIALS__
|
|
/* just do the reflection thing for now */
|
|
*domega_in_dx = (2.0f * dot(N, dIdx)) * N - dIdx;
|
|
*domega_in_dy = (2.0f * dot(N, dIdy)) * N - dIdy;
|
|
#endif
|
|
}
|
|
|
|
return label;
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|