Files
blender/intern/cycles/kernel/closure/bsdf_util.h
Brecht Van Lommel 0803119725 Cycles: merge of cycles-x branch, a major update to the renderer
This includes much improved GPU rendering performance, viewport interactivity,
new shadow catcher, revamped sampling settings, subsurface scattering anisotropy,
new GPU volume sampling, improved PMJ sampling pattern, and more.

Some features have also been removed or changed, breaking backwards compatibility.
Including the removal of the OpenCL backend, for which alternatives are under
development.

Release notes and code docs:
https://wiki.blender.org/wiki/Reference/Release_Notes/3.0/Cycles
https://wiki.blender.org/wiki/Source/Render/Cycles

Credits:
* Sergey Sharybin
* Brecht Van Lommel
* Patrick Mours (OptiX backend)
* Christophe Hery (subsurface scattering anisotropy)
* William Leeson (PMJ sampling pattern)
* Alaska (various fixes and tweaks)
* Thomas Dinges (various fixes)

For the full commit history, see the cycles-x branch. This squashes together
all the changes since intermediate changes would often fail building or tests.

Ref T87839, T87837, T87836
Fixes T90734, T89353, T80267, T80267, T77185, T69800
2021-09-21 14:55:54 +02:00

152 lines
5.4 KiB
C

/*
* Adapted from Open Shading Language with this license:
*
* Copyright (c) 2009-2010 Sony Pictures Imageworks Inc., et al.
* All Rights Reserved.
*
* Modifications Copyright 2011, Blender Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Sony Pictures Imageworks nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
CCL_NAMESPACE_BEGIN
ccl_device float fresnel_dielectric(float eta,
const float3 N,
const float3 I,
float3 *R,
float3 *T,
#ifdef __RAY_DIFFERENTIALS__
const float3 dIdx,
const float3 dIdy,
float3 *dRdx,
float3 *dRdy,
float3 *dTdx,
float3 *dTdy,
#endif
bool *is_inside)
{
float cos = dot(N, I), neta;
float3 Nn;
// check which side of the surface we are on
if (cos > 0) {
// we are on the outside of the surface, going in
neta = 1 / eta;
Nn = N;
*is_inside = false;
}
else {
// we are inside the surface
cos = -cos;
neta = eta;
Nn = -N;
*is_inside = true;
}
// compute reflection
*R = (2 * cos) * Nn - I;
#ifdef __RAY_DIFFERENTIALS__
*dRdx = (2 * dot(Nn, dIdx)) * Nn - dIdx;
*dRdy = (2 * dot(Nn, dIdy)) * Nn - dIdy;
#endif
float arg = 1 - (neta * neta * (1 - (cos * cos)));
if (arg < 0) {
*T = make_float3(0.0f, 0.0f, 0.0f);
#ifdef __RAY_DIFFERENTIALS__
*dTdx = make_float3(0.0f, 0.0f, 0.0f);
*dTdy = make_float3(0.0f, 0.0f, 0.0f);
#endif
return 1; // total internal reflection
}
else {
float dnp = max(sqrtf(arg), 1e-7f);
float nK = (neta * cos) - dnp;
*T = -(neta * I) + (nK * Nn);
#ifdef __RAY_DIFFERENTIALS__
*dTdx = -(neta * dIdx) + ((neta - neta * neta * cos / dnp) * dot(dIdx, Nn)) * Nn;
*dTdy = -(neta * dIdy) + ((neta - neta * neta * cos / dnp) * dot(dIdy, Nn)) * Nn;
#endif
// compute Fresnel terms
float cosTheta1 = cos; // N.R
float cosTheta2 = -dot(Nn, *T);
float pPara = (cosTheta1 - eta * cosTheta2) / (cosTheta1 + eta * cosTheta2);
float pPerp = (eta * cosTheta1 - cosTheta2) / (eta * cosTheta1 + cosTheta2);
return 0.5f * (pPara * pPara + pPerp * pPerp);
}
}
ccl_device float fresnel_dielectric_cos(float cosi, float eta)
{
// compute fresnel reflectance without explicitly computing
// the refracted direction
float c = fabsf(cosi);
float g = eta * eta - 1 + c * c;
if (g > 0) {
g = sqrtf(g);
float A = (g - c) / (g + c);
float B = (c * (g + c) - 1) / (c * (g - c) + 1);
return 0.5f * A * A * (1 + B * B);
}
return 1.0f; // TIR(no refracted component)
}
ccl_device float3 fresnel_conductor(float cosi, const float3 eta, const float3 k)
{
float3 cosi2 = make_float3(cosi * cosi, cosi * cosi, cosi * cosi);
float3 one = make_float3(1.0f, 1.0f, 1.0f);
float3 tmp_f = eta * eta + k * k;
float3 tmp = tmp_f * cosi2;
float3 Rparl2 = (tmp - (2.0f * eta * cosi) + one) / (tmp + (2.0f * eta * cosi) + one);
float3 Rperp2 = (tmp_f - (2.0f * eta * cosi) + cosi2) / (tmp_f + (2.0f * eta * cosi) + cosi2);
return (Rparl2 + Rperp2) * 0.5f;
}
ccl_device float schlick_fresnel(float u)
{
float m = clamp(1.0f - u, 0.0f, 1.0f);
float m2 = m * m;
return m2 * m2 * m; // pow(m, 5)
}
/* Calculate the fresnel color which is a blend between white and the F0 color (cspec0) */
ccl_device_forceinline float3
interpolate_fresnel_color(float3 L, float3 H, float ior, float F0, float3 cspec0)
{
/* Calculate the fresnel interpolation factor
* The value from fresnel_dielectric_cos(...) has to be normalized because
* the cspec0 keeps the F0 color
*/
float F0_norm = 1.0f / (1.0f - F0);
float FH = (fresnel_dielectric_cos(dot(L, H), ior) - F0) * F0_norm;
/* Blend between white and a specular color with respect to the fresnel */
return cspec0 * (1.0f - FH) + make_float3(1.0f, 1.0f, 1.0f) * FH;
}
CCL_NAMESPACE_END