Files
blender/source/blender/blenkernel/intern/curve.c

3529 lines
80 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/curve.c
* \ingroup bke
*/
#include <math.h> // floor
#include <string.h>
#include <stdlib.h>
#include "MEM_guardedalloc.h"
#include "BLI_blenlib.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "BLI_ghash.h"
#include "DNA_curve_types.h"
#include "DNA_material_types.h"
/* for dereferencing pointers */
#include "DNA_key_types.h"
#include "DNA_scene_types.h"
#include "DNA_vfont_types.h"
#include "DNA_object_types.h"
#include "BKE_animsys.h"
#include "BKE_anim.h"
#include "BKE_curve.h"
#include "BKE_displist.h"
#include "BKE_font.h"
#include "BKE_global.h"
#include "BKE_key.h"
#include "BKE_library.h"
#include "BKE_main.h"
#include "BKE_object.h"
#include "BKE_material.h"
/* globals */
/* local */
static int cu_isectLL(const float v1[3], const float v2[3], const float v3[3], const float v4[3],
short cox, short coy,
float *lambda, float *mu, float vec[3]);
void BKE_curve_unlink(Curve *cu)
{
int a;
for (a = 0; a < cu->totcol; a++) {
if (cu->mat[a]) cu->mat[a]->id.us--;
cu->mat[a] = NULL;
}
if (cu->vfont)
cu->vfont->id.us--;
cu->vfont = NULL;
if (cu->vfontb)
cu->vfontb->id.us--;
cu->vfontb = NULL;
if (cu->vfonti)
cu->vfonti->id.us--;
cu->vfonti = NULL;
if (cu->vfontbi)
cu->vfontbi->id.us--;
cu->vfontbi = NULL;
if (cu->key)
cu->key->id.us--;
cu->key = NULL;
}
/* frees editcurve entirely */
void BKE_curve_editfont_free(Curve *cu)
{
if (cu->editfont) {
EditFont *ef = cu->editfont;
if (ef->oldstr)
MEM_freeN(ef->oldstr);
if (ef->oldstrinfo)
MEM_freeN(ef->oldstrinfo);
if (ef->textbuf)
MEM_freeN(ef->textbuf);
if (ef->textbufinfo)
MEM_freeN(ef->textbufinfo);
if (ef->copybuf)
MEM_freeN(ef->copybuf);
if (ef->copybufinfo)
MEM_freeN(ef->copybufinfo);
MEM_freeN(ef);
cu->editfont = NULL;
}
}
void BKE_curve_editNurb_keyIndex_free(EditNurb *editnurb)
{
if (!editnurb->keyindex) {
return;
}
BLI_ghash_free(editnurb->keyindex, NULL, (GHashValFreeFP)MEM_freeN);
editnurb->keyindex = NULL;
}
void BKE_curve_editNurb_free(Curve *cu)
{
if (cu->editnurb) {
BKE_nurbList_free(&cu->editnurb->nurbs);
BKE_curve_editNurb_keyIndex_free(cu->editnurb);
MEM_freeN(cu->editnurb);
cu->editnurb = NULL;
}
}
/* don't free curve itself */
void BKE_curve_free(Curve *cu)
{
BKE_nurbList_free(&cu->nurb);
BLI_freelistN(&cu->bev);
BKE_displist_free(&cu->disp);
BKE_curve_editfont_free(cu);
BKE_curve_editNurb_free(cu);
BKE_curve_unlink(cu);
BKE_free_animdata((ID *)cu);
if (cu->mat)
MEM_freeN(cu->mat);
if (cu->str)
MEM_freeN(cu->str);
if (cu->strinfo)
MEM_freeN(cu->strinfo);
if (cu->bb)
MEM_freeN(cu->bb);
if (cu->path)
free_path(cu->path);
if (cu->tb)
MEM_freeN(cu->tb);
}
Curve *BKE_curve_add(Main *bmain, const char *name, int type)
{
Curve *cu;
cu = BKE_libblock_alloc(&bmain->curve, ID_CU, name);
copy_v3_fl(cu->size, 1.0f);
cu->flag = CU_FRONT | CU_BACK | CU_DEFORM_BOUNDS_OFF | CU_PATH_RADIUS;
cu->pathlen = 100;
cu->resolu = cu->resolv = (type == OB_SURF) ? 4 : 12;
cu->width = 1.0;
cu->wordspace = 1.0;
cu->spacing = cu->linedist = 1.0;
cu->fsize = 1.0;
cu->ulheight = 0.05;
cu->texflag = CU_AUTOSPACE;
cu->smallcaps_scale = 0.75f;
/* XXX: this one seems to be the best one in most cases, at least for curve deform... */
cu->twist_mode = CU_TWIST_MINIMUM;
cu->type = type;
cu->bevfac1 = 0.0f;
cu->bevfac2 = 1.0f;
cu->bb = BKE_boundbox_alloc_unit();
if (type == OB_FONT) {
cu->vfont = cu->vfontb = cu->vfonti = cu->vfontbi = BKE_vfont_builtin_get();
cu->vfont->id.us += 4;
cu->str = MEM_mallocN(12, "str");
BLI_strncpy(cu->str, "Text", 12);
cu->len = cu->pos = 4;
cu->strinfo = MEM_callocN(12 * sizeof(CharInfo), "strinfo new");
cu->totbox = cu->actbox = 1;
cu->tb = MEM_callocN(MAXTEXTBOX * sizeof(TextBox), "textbox");
cu->tb[0].w = cu->tb[0].h = 0.0;
}
return cu;
}
Curve *BKE_curve_copy(Curve *cu)
{
Curve *cun;
int a;
cun = BKE_libblock_copy(&cu->id);
cun->nurb.first = cun->nurb.last = NULL;
BKE_nurbList_duplicate(&(cun->nurb), &(cu->nurb));
cun->mat = MEM_dupallocN(cu->mat);
for (a = 0; a < cun->totcol; a++) {
id_us_plus((ID *)cun->mat[a]);
}
cun->str = MEM_dupallocN(cu->str);
cun->strinfo = MEM_dupallocN(cu->strinfo);
cun->tb = MEM_dupallocN(cu->tb);
cun->bb = MEM_dupallocN(cu->bb);
cun->key = BKE_key_copy(cu->key);
if (cun->key) cun->key->from = (ID *)cun;
cun->disp.first = cun->disp.last = NULL;
cun->bev.first = cun->bev.last = NULL;
cun->path = NULL;
cun->editnurb = NULL;
cun->editfont = NULL;
cun->selboxes = NULL;
#if 0 // XXX old animation system
/* single user ipo too */
if (cun->ipo) cun->ipo = copy_ipo(cun->ipo);
#endif // XXX old animation system
id_us_plus((ID *)cun->vfont);
id_us_plus((ID *)cun->vfontb);
id_us_plus((ID *)cun->vfonti);
id_us_plus((ID *)cun->vfontbi);
return cun;
}
static void extern_local_curve(Curve *cu)
{
id_lib_extern((ID *)cu->vfont);
id_lib_extern((ID *)cu->vfontb);
id_lib_extern((ID *)cu->vfonti);
id_lib_extern((ID *)cu->vfontbi);
if (cu->mat) {
extern_local_matarar(cu->mat, cu->totcol);
}
}
void BKE_curve_make_local(Curve *cu)
{
Main *bmain = G.main;
Object *ob;
int is_local = FALSE, is_lib = FALSE;
/* - when there are only lib users: don't do
* - when there are only local users: set flag
* - mixed: do a copy
*/
if (cu->id.lib == NULL)
return;
if (cu->id.us == 1) {
id_clear_lib_data(bmain, &cu->id);
extern_local_curve(cu);
return;
}
for (ob = bmain->object.first; ob && ELEM(0, is_lib, is_local); ob = ob->id.next) {
if (ob->data == cu) {
if (ob->id.lib) is_lib = TRUE;
else is_local = TRUE;
}
}
if (is_local && is_lib == FALSE) {
id_clear_lib_data(bmain, &cu->id);
extern_local_curve(cu);
}
else if (is_local && is_lib) {
Curve *cu_new = BKE_curve_copy(cu);
cu_new->id.us = 0;
BKE_id_lib_local_paths(bmain, cu->id.lib, &cu_new->id);
for (ob = bmain->object.first; ob; ob = ob->id.next) {
if (ob->data == cu) {
if (ob->id.lib == NULL) {
ob->data = cu_new;
cu_new->id.us++;
cu->id.us--;
}
}
}
}
}
/* Get list of nurbs from editnurbs structure */
ListBase *BKE_curve_editNurbs_get(Curve *cu)
{
if (cu->editnurb) {
return &cu->editnurb->nurbs;
}
return NULL;
}
short BKE_curve_type_get(Curve *cu)
{
Nurb *nu;
int type = cu->type;
if (cu->vfont) {
return OB_FONT;
}
if (!cu->type) {
type = OB_CURVE;
for (nu = cu->nurb.first; nu; nu = nu->next) {
if (nu->pntsv > 1) {
type = OB_SURF;
}
}
}
return type;
}
void BKE_curve_curve_dimension_update(Curve *cu)
{
ListBase *nurbs = BKE_curve_nurbs_get(cu);
Nurb *nu = nurbs->first;
if (cu->flag & CU_3D) {
for (; nu; nu = nu->next) {
nu->flag &= ~CU_2D;
}
}
else {
for (; nu; nu = nu->next) {
nu->flag |= CU_2D;
BKE_nurb_test2D(nu);
/* since the handles are moved they need to be auto-located again */
if (nu->type == CU_BEZIER)
BKE_nurb_handles_calc(nu);
}
}
}
void BKE_curve_type_test(Object *ob)
{
ob->type = BKE_curve_type_get(ob->data);
if (ob->type == OB_CURVE)
BKE_curve_curve_dimension_update((Curve *)ob->data);
}
void BKE_curve_texspace_calc(Curve *cu)
{
DispList *dl;
BoundBox *bb;
float *fp, min[3], max[3];
int tot, do_it = FALSE;
if (cu->bb == NULL)
cu->bb = MEM_callocN(sizeof(BoundBox), "boundbox");
bb = cu->bb;
INIT_MINMAX(min, max);
dl = cu->disp.first;
while (dl) {
tot = ELEM(dl->type, DL_INDEX3, DL_INDEX4) ? dl->nr : dl->nr * dl->parts;
if (tot) do_it = TRUE;
fp = dl->verts;
while (tot--) {
minmax_v3v3_v3(min, max, fp);
fp += 3;
}
dl = dl->next;
}
if (do_it == FALSE) {
min[0] = min[1] = min[2] = -1.0f;
max[0] = max[1] = max[2] = 1.0f;
}
BKE_boundbox_init_from_minmax(bb, min, max);
if (cu->texflag & CU_AUTOSPACE) {
mid_v3_v3v3(cu->loc, min, max);
cu->size[0] = (max[0] - min[0]) / 2.0f;
cu->size[1] = (max[1] - min[1]) / 2.0f;
cu->size[2] = (max[2] - min[2]) / 2.0f;
zero_v3(cu->rot);
if (cu->size[0] == 0.0f) cu->size[0] = 1.0f;
else if (cu->size[0] > 0.0f && cu->size[0] < 0.00001f) cu->size[0] = 0.00001f;
else if (cu->size[0] < 0.0f && cu->size[0] > -0.00001f) cu->size[0] = -0.00001f;
if (cu->size[1] == 0.0f) cu->size[1] = 1.0f;
else if (cu->size[1] > 0.0f && cu->size[1] < 0.00001f) cu->size[1] = 0.00001f;
else if (cu->size[1] < 0.0f && cu->size[1] > -0.00001f) cu->size[1] = -0.00001f;
if (cu->size[2] == 0.0f) cu->size[2] = 1.0f;
else if (cu->size[2] > 0.0f && cu->size[2] < 0.00001f) cu->size[2] = 0.00001f;
else if (cu->size[2] < 0.0f && cu->size[2] > -0.00001f) cu->size[2] = -0.00001f;
}
}
int BKE_nurbList_index_get_co(ListBase *nurb, const int index, float r_co[3])
{
Nurb *nu;
int tot = 0;
for (nu = nurb->first; nu; nu = nu->next) {
int tot_nu;
if (nu->type == CU_BEZIER) {
tot_nu = nu->pntsu;
if (index - tot < tot_nu) {
copy_v3_v3(r_co, nu->bezt[index - tot].vec[1]);
return TRUE;
}
}
else {
tot_nu = nu->pntsu * nu->pntsv;
if (index - tot < tot_nu) {
copy_v3_v3(r_co, nu->bp[index - tot].vec);
return TRUE;
}
}
tot += tot_nu;
}
return FALSE;
}
int BKE_nurbList_verts_count(ListBase *nurb)
{
Nurb *nu;
int tot = 0;
nu = nurb->first;
while (nu) {
if (nu->bezt)
tot += 3 * nu->pntsu;
else if (nu->bp)
tot += nu->pntsu * nu->pntsv;
nu = nu->next;
}
return tot;
}
int BKE_nurbList_verts_count_without_handles(ListBase *nurb)
{
Nurb *nu;
int tot = 0;
nu = nurb->first;
while (nu) {
if (nu->bezt)
tot += nu->pntsu;
else if (nu->bp)
tot += nu->pntsu * nu->pntsv;
nu = nu->next;
}
return tot;
}
/* **************** NURBS ROUTINES ******************** */
void BKE_nurb_free(Nurb *nu)
{
if (nu == NULL) return;
if (nu->bezt)
MEM_freeN(nu->bezt);
nu->bezt = NULL;
if (nu->bp)
MEM_freeN(nu->bp);
nu->bp = NULL;
if (nu->knotsu)
MEM_freeN(nu->knotsu);
nu->knotsu = NULL;
if (nu->knotsv)
MEM_freeN(nu->knotsv);
nu->knotsv = NULL;
/* if (nu->trim.first) freeNurblist(&(nu->trim)); */
MEM_freeN(nu);
}
void BKE_nurbList_free(ListBase *lb)
{
Nurb *nu, *next;
if (lb == NULL) return;
nu = lb->first;
while (nu) {
next = nu->next;
BKE_nurb_free(nu);
nu = next;
}
lb->first = lb->last = NULL;
}
Nurb *BKE_nurb_duplicate(Nurb *nu)
{
Nurb *newnu;
int len;
newnu = (Nurb *)MEM_mallocN(sizeof(Nurb), "duplicateNurb");
if (newnu == NULL) return NULL;
memcpy(newnu, nu, sizeof(Nurb));
if (nu->bezt) {
newnu->bezt =
(BezTriple *)MEM_mallocN((nu->pntsu) * sizeof(BezTriple), "duplicateNurb2");
memcpy(newnu->bezt, nu->bezt, nu->pntsu * sizeof(BezTriple));
}
else {
len = nu->pntsu * nu->pntsv;
newnu->bp =
(BPoint *)MEM_mallocN((len) * sizeof(BPoint), "duplicateNurb3");
memcpy(newnu->bp, nu->bp, len * sizeof(BPoint));
newnu->knotsu = newnu->knotsv = NULL;
if (nu->knotsu) {
len = KNOTSU(nu);
if (len) {
newnu->knotsu = MEM_mallocN(len * sizeof(float), "duplicateNurb4");
memcpy(newnu->knotsu, nu->knotsu, sizeof(float) * len);
}
}
if (nu->pntsv > 1 && nu->knotsv) {
len = KNOTSV(nu);
if (len) {
newnu->knotsv = MEM_mallocN(len * sizeof(float), "duplicateNurb5");
memcpy(newnu->knotsv, nu->knotsv, sizeof(float) * len);
}
}
}
return newnu;
}
void BKE_nurbList_duplicate(ListBase *lb1, ListBase *lb2)
{
Nurb *nu, *nun;
BKE_nurbList_free(lb1);
nu = lb2->first;
while (nu) {
nun = BKE_nurb_duplicate(nu);
BLI_addtail(lb1, nun);
nu = nu->next;
}
}
void BKE_nurb_test2D(Nurb *nu)
{
BezTriple *bezt;
BPoint *bp;
int a;
if ((nu->flag & CU_2D) == 0)
return;
if (nu->type == CU_BEZIER) {
a = nu->pntsu;
bezt = nu->bezt;
while (a--) {
bezt->vec[0][2] = 0.0;
bezt->vec[1][2] = 0.0;
bezt->vec[2][2] = 0.0;
bezt++;
}
}
else {
a = nu->pntsu * nu->pntsv;
bp = nu->bp;
while (a--) {
bp->vec[2] = 0.0;
bp++;
}
}
}
void BKE_nurb_minmax(Nurb *nu, float min[3], float max[3])
{
BezTriple *bezt;
BPoint *bp;
int a;
if (nu->type == CU_BEZIER) {
a = nu->pntsu;
bezt = nu->bezt;
while (a--) {
minmax_v3v3_v3(min, max, bezt->vec[0]);
minmax_v3v3_v3(min, max, bezt->vec[1]);
minmax_v3v3_v3(min, max, bezt->vec[2]);
bezt++;
}
}
else {
a = nu->pntsu * nu->pntsv;
bp = nu->bp;
while (a--) {
minmax_v3v3_v3(min, max, bp->vec);
bp++;
}
}
}
/* be sure to call makeknots after this */
void BKE_nurb_points_add(Nurb *nu, int number)
{
BPoint *tmp = nu->bp;
int i;
nu->bp = (BPoint *)MEM_mallocN((nu->pntsu + number) * sizeof(BPoint), "rna_Curve_spline_points_add");
if (tmp) {
memmove(nu->bp, tmp, nu->pntsu * sizeof(BPoint));
MEM_freeN(tmp);
}
memset(nu->bp + nu->pntsu, 0, number * sizeof(BPoint));
for (i = 0, tmp = nu->bp + nu->pntsu; i < number; i++, tmp++) {
tmp->radius = 1.0f;
}
nu->pntsu += number;
}
void BKE_nurb_bezierPoints_add(Nurb *nu, int number)
{
BezTriple *tmp = nu->bezt;
int i;
nu->bezt = (BezTriple *)MEM_mallocN((nu->pntsu + number) * sizeof(BezTriple), "rna_Curve_spline_points_add");
if (tmp) {
memmove(nu->bezt, tmp, nu->pntsu * sizeof(BezTriple));
MEM_freeN(tmp);
}
memset(nu->bezt + nu->pntsu, 0, number * sizeof(BezTriple));
for (i = 0, tmp = nu->bezt + nu->pntsu; i < number; i++, tmp++) {
tmp->radius = 1.0f;
}
nu->pntsu += number;
}
/* ~~~~~~~~~~~~~~~~~~~~Non Uniform Rational B Spline calculations ~~~~~~~~~~~ */
static void calcknots(float *knots, const short pnts, const short order, const short flag)
{
/* knots: number of pnts NOT corrected for cyclic */
const int pnts_order = pnts + order;
float k;
int a;
switch (flag & (CU_NURB_ENDPOINT | CU_NURB_BEZIER)) {
case CU_NURB_ENDPOINT:
k = 0.0;
for (a = 1; a <= pnts_order; a++) {
knots[a - 1] = k;
if (a >= order && a <= pnts)
k += 1.0f;
}
break;
case CU_NURB_BEZIER:
/* Warning, the order MUST be 2 or 4,
* if this is not enforced, the displist will be corrupt */
if (order == 4) {
k = 0.34;
for (a = 0; a < pnts_order; a++) {
knots[a] = floorf(k);
k += (1.0f / 3.0f);
}
}
else if (order == 3) {
k = 0.6f;
for (a = 0; a < pnts_order; a++) {
if (a >= order && a <= pnts)
k += 0.5f;
knots[a] = floorf(k);
}
}
else {
printf("bez nurb curve order is not 3 or 4, should never happen\n");
}
break;
default:
for (a = 0; a < pnts_order; a++) {
knots[a] = (float)a;
}
break;
}
}
static void makecyclicknots(float *knots, short pnts, short order)
/* pnts, order: number of pnts NOT corrected for cyclic */
{
int a, b, order2, c;
if (knots == NULL)
return;
order2 = order - 1;
/* do first long rows (order -1), remove identical knots at endpoints */
if (order > 2) {
b = pnts + order2;
for (a = 1; a < order2; a++) {
if (knots[b] != knots[b - a])
break;
}
if (a == order2)
knots[pnts + order - 2] += 1.0f;
}
b = order;
c = pnts + order + order2;
for (a = pnts + order2; a < c; a++) {
knots[a] = knots[a - 1] + (knots[b] - knots[b - 1]);
b--;
}
}
static void makeknots(Nurb *nu, short uv)
{
if (nu->type == CU_NURBS) {
if (uv == 1) {
if (nu->knotsu)
MEM_freeN(nu->knotsu);
if (BKE_nurb_check_valid_u(nu)) {
nu->knotsu = MEM_callocN(4 + sizeof(float) * KNOTSU(nu), "makeknots");
if (nu->flagu & CU_NURB_CYCLIC) {
calcknots(nu->knotsu, nu->pntsu, nu->orderu, 0); /* cyclic should be uniform */
makecyclicknots(nu->knotsu, nu->pntsu, nu->orderu);
}
else {
calcknots(nu->knotsu, nu->pntsu, nu->orderu, nu->flagu);
}
}
else
nu->knotsu = NULL;
}
else if (uv == 2) {
if (nu->knotsv)
MEM_freeN(nu->knotsv);
if (BKE_nurb_check_valid_v(nu)) {
nu->knotsv = MEM_callocN(4 + sizeof(float) * KNOTSV(nu), "makeknots");
if (nu->flagv & CU_NURB_CYCLIC) {
calcknots(nu->knotsv, nu->pntsv, nu->orderv, 0); /* cyclic should be uniform */
makecyclicknots(nu->knotsv, nu->pntsv, nu->orderv);
}
else {
calcknots(nu->knotsv, nu->pntsv, nu->orderv, nu->flagv);
}
}
else nu->knotsv = NULL;
}
}
}
void BKE_nurb_knot_calc_u(Nurb *nu)
{
makeknots(nu, 1);
}
void BKE_nurb_knot_calc_v(Nurb *nu)
{
makeknots(nu, 2);
}
static void basisNurb(float t, short order, short pnts, float *knots, float *basis, int *start, int *end)
{
float d, e;
int i, i1 = 0, i2 = 0, j, orderpluspnts, opp2, o2;
orderpluspnts = order + pnts;
opp2 = orderpluspnts - 1;
/* this is for float inaccuracy */
if (t < knots[0])
t = knots[0];
else if (t > knots[opp2])
t = knots[opp2];
/* this part is order '1' */
o2 = order + 1;
for (i = 0; i < opp2; i++) {
if (knots[i] != knots[i + 1] && t >= knots[i] && t <= knots[i + 1]) {
basis[i] = 1.0;
i1 = i - o2;
if (i1 < 0) i1 = 0;
i2 = i;
i++;
while (i < opp2) {
basis[i] = 0.0;
i++;
}
break;
}
else
basis[i] = 0.0;
}
basis[i] = 0.0;
/* this is order 2, 3, ... */
for (j = 2; j <= order; j++) {
if (i2 + j >= orderpluspnts) i2 = opp2 - j;
for (i = i1; i <= i2; i++) {
if (basis[i] != 0.0f)
d = ((t - knots[i]) * basis[i]) / (knots[i + j - 1] - knots[i]);
else
d = 0.0f;
if (basis[i + 1] != 0.0f)
e = ((knots[i + j] - t) * basis[i + 1]) / (knots[i + j] - knots[i + 1]);
else
e = 0.0;
basis[i] = d + e;
}
}
*start = 1000;
*end = 0;
for (i = i1; i <= i2; i++) {
if (basis[i] > 0.0f) {
*end = i;
if (*start == 1000) *start = i;
}
}
}
void BKE_nurb_makeFaces(Nurb *nu, float *coord_array, int rowstride, int resolu, int resolv)
/* coord_array has to be (3 * 4 * resolu * resolv) in size, and zero-ed */
{
BPoint *bp;
float *basisu, *basis, *basisv, *sum, *fp, *in;
float u, v, ustart, uend, ustep, vstart, vend, vstep, sumdiv;
int i, j, iofs, jofs, cycl, len, curu, curv;
int istart, iend, jsta, jen, *jstart, *jend, ratcomp;
int totu = nu->pntsu * resolu, totv = nu->pntsv * resolv;
if (nu->knotsu == NULL || nu->knotsv == NULL)
return;
if (nu->orderu > nu->pntsu)
return;
if (nu->orderv > nu->pntsv)
return;
if (coord_array == NULL)
return;
/* allocate and initialize */
len = totu * totv;
if (len == 0)
return;
sum = (float *)MEM_callocN(sizeof(float) * len, "makeNurbfaces1");
len = totu * totv;
if (len == 0) {
MEM_freeN(sum);
return;
}
bp = nu->bp;
i = nu->pntsu * nu->pntsv;
ratcomp = 0;
while (i--) {
if (bp->vec[3] != 1.0f) {
ratcomp = 1;
break;
}
bp++;
}
fp = nu->knotsu;
ustart = fp[nu->orderu - 1];
if (nu->flagu & CU_NURB_CYCLIC)
uend = fp[nu->pntsu + nu->orderu - 1];
else
uend = fp[nu->pntsu];
ustep = (uend - ustart) / ((nu->flagu & CU_NURB_CYCLIC) ? totu : totu - 1);
basisu = (float *)MEM_mallocN(sizeof(float) * KNOTSU(nu), "makeNurbfaces3");
fp = nu->knotsv;
vstart = fp[nu->orderv - 1];
if (nu->flagv & CU_NURB_CYCLIC)
vend = fp[nu->pntsv + nu->orderv - 1];
else
vend = fp[nu->pntsv];
vstep = (vend - vstart) / ((nu->flagv & CU_NURB_CYCLIC) ? totv : totv - 1);
len = KNOTSV(nu);
basisv = (float *)MEM_mallocN(sizeof(float) * len * totv, "makeNurbfaces3");
jstart = (int *)MEM_mallocN(sizeof(float) * totv, "makeNurbfaces4");
jend = (int *)MEM_mallocN(sizeof(float) * totv, "makeNurbfaces5");
/* precalculation of basisv and jstart, jend */
if (nu->flagv & CU_NURB_CYCLIC)
cycl = nu->orderv - 1;
else cycl = 0;
v = vstart;
basis = basisv;
curv = totv;
while (curv--) {
basisNurb(v, nu->orderv, (short)(nu->pntsv + cycl), nu->knotsv, basis, jstart + curv, jend + curv);
basis += KNOTSV(nu);
v += vstep;
}
if (nu->flagu & CU_NURB_CYCLIC)
cycl = nu->orderu - 1;
else
cycl = 0;
in = coord_array;
u = ustart;
curu = totu;
while (curu--) {
basisNurb(u, nu->orderu, (short)(nu->pntsu + cycl), nu->knotsu, basisu, &istart, &iend);
basis = basisv;
curv = totv;
while (curv--) {
jsta = jstart[curv];
jen = jend[curv];
/* calculate sum */
sumdiv = 0.0;
fp = sum;
for (j = jsta; j <= jen; j++) {
if (j >= nu->pntsv)
jofs = (j - nu->pntsv);
else
jofs = j;
bp = nu->bp + nu->pntsu * jofs + istart - 1;
for (i = istart; i <= iend; i++, fp++) {
if (i >= nu->pntsu) {
iofs = i - nu->pntsu;
bp = nu->bp + nu->pntsu * jofs + iofs;
}
else
bp++;
if (ratcomp) {
*fp = basisu[i] * basis[j] * bp->vec[3];
sumdiv += *fp;
}
else
*fp = basisu[i] * basis[j];
}
}
if (ratcomp) {
fp = sum;
for (j = jsta; j <= jen; j++) {
for (i = istart; i <= iend; i++, fp++) {
*fp /= sumdiv;
}
}
}
/* one! (1.0) real point now */
fp = sum;
for (j = jsta; j <= jen; j++) {
if (j >= nu->pntsv)
jofs = (j - nu->pntsv);
else
jofs = j;
bp = nu->bp + nu->pntsu * jofs + istart - 1;
for (i = istart; i <= iend; i++, fp++) {
if (i >= nu->pntsu) {
iofs = i - nu->pntsu;
bp = nu->bp + nu->pntsu * jofs + iofs;
}
else
bp++;
if (*fp != 0.0f) {
madd_v3_v3fl(in, bp->vec, *fp);
}
}
}
in += 3;
basis += KNOTSV(nu);
}
u += ustep;
if (rowstride != 0)
in = (float *) (((unsigned char *) in) + (rowstride - 3 * totv * sizeof(*in)));
}
/* free */
MEM_freeN(sum);
MEM_freeN(basisu);
MEM_freeN(basisv);
MEM_freeN(jstart);
MEM_freeN(jend);
}
/**
* \param coord_array Has to be 3 * 4 * pntsu * resolu in size and zero-ed
* \param tilt_array set when non-NULL
* \param radius_array set when non-NULL
*/
void BKE_nurb_makeCurve(Nurb *nu, float *coord_array, float *tilt_array, float *radius_array, float *weight_array,
int resolu, int stride)
{
BPoint *bp;
float u, ustart, uend, ustep, sumdiv;
float *basisu, *sum, *fp;
float *coord_fp = coord_array, *tilt_fp = tilt_array, *radius_fp = radius_array, *weight_fp = weight_array;
int i, len, istart, iend, cycl;
if (nu->knotsu == NULL)
return;
if (nu->orderu > nu->pntsu)
return;
if (coord_array == NULL)
return;
/* allocate and initialize */
len = nu->pntsu;
if (len == 0)
return;
sum = (float *)MEM_callocN(sizeof(float) * len, "makeNurbcurve1");
resolu = (resolu * SEGMENTSU(nu));
if (resolu == 0) {
MEM_freeN(sum);
return;
}
fp = nu->knotsu;
ustart = fp[nu->orderu - 1];
if (nu->flagu & CU_NURB_CYCLIC)
uend = fp[nu->pntsu + nu->orderu - 1];
else
uend = fp[nu->pntsu];
ustep = (uend - ustart) / (resolu - ((nu->flagu & CU_NURB_CYCLIC) ? 0 : 1));
basisu = (float *)MEM_mallocN(sizeof(float) * KNOTSU(nu), "makeNurbcurve3");
if (nu->flagu & CU_NURB_CYCLIC)
cycl = nu->orderu - 1;
else
cycl = 0;
u = ustart;
while (resolu--) {
basisNurb(u, nu->orderu, (short)(nu->pntsu + cycl), nu->knotsu, basisu, &istart, &iend);
/* calc sum */
sumdiv = 0.0;
fp = sum;
bp = nu->bp + istart - 1;
for (i = istart; i <= iend; i++, fp++) {
if (i >= nu->pntsu)
bp = nu->bp + (i - nu->pntsu);
else
bp++;
*fp = basisu[i] * bp->vec[3];
sumdiv += *fp;
}
if ((sumdiv != 0.0f) && (sumdiv < 0.999f || sumdiv > 1.001f)) {
/* is normalizing needed? */
fp = sum;
for (i = istart; i <= iend; i++, fp++) {
*fp /= sumdiv;
}
}
/* one! (1.0) real point */
fp = sum;
bp = nu->bp + istart - 1;
for (i = istart; i <= iend; i++, fp++) {
if (i >= nu->pntsu)
bp = nu->bp + (i - nu->pntsu);
else
bp++;
if (*fp != 0.0f) {
madd_v3_v3fl(coord_fp, bp->vec, *fp);
if (tilt_fp)
(*tilt_fp) += (*fp) * bp->alfa;
if (radius_fp)
(*radius_fp) += (*fp) * bp->radius;
if (weight_fp)
(*weight_fp) += (*fp) * bp->weight;
}
}
coord_fp = (float *)(((char *)coord_fp) + stride);
if (tilt_fp)
tilt_fp = (float *)(((char *)tilt_fp) + stride);
if (radius_fp)
radius_fp = (float *)(((char *)radius_fp) + stride);
if (weight_fp)
weight_fp = (float *)(((char *)weight_fp) + stride);
u += ustep;
}
/* free */
MEM_freeN(sum);
MEM_freeN(basisu);
}
/* forward differencing method for bezier curve */
void BKE_curve_forward_diff_bezier(float q0, float q1, float q2, float q3, float *p, int it, int stride)
{
float rt0, rt1, rt2, rt3, f;
int a;
f = (float)it;
rt0 = q0;
rt1 = 3.0f * (q1 - q0) / f;
f *= f;
rt2 = 3.0f * (q0 - 2.0f * q1 + q2) / f;
f *= it;
rt3 = (q3 - q0 + 3.0f * (q1 - q2)) / f;
q0 = rt0;
q1 = rt1 + rt2 + rt3;
q2 = 2 * rt2 + 6 * rt3;
q3 = 6 * rt3;
for (a = 0; a <= it; a++) {
*p = q0;
p = (float *)(((char *)p) + stride);
q0 += q1;
q1 += q2;
q2 += q3;
}
}
static void forward_diff_bezier_cotangent(const float p0[3], const float p1[3], const float p2[3], const float p3[3],
float p[3], int it, int stride)
{
/* note that these are not perpendicular to the curve
* they need to be rotated for this,
*
* This could also be optimized like BKE_curve_forward_diff_bezier */
int a;
for (a = 0; a <= it; a++) {
float t = (float)a / (float)it;
int i;
for (i = 0; i < 3; i++) {
p[i] = (-6.0f * t + 6.0f) * p0[i] +
( 18.0f * t - 12.0f) * p1[i] +
(-18.0f * t + 6.0f) * p2[i] +
( 6.0f * t) * p3[i];
}
normalize_v3(p);
p = (float *)(((char *)p) + stride);
}
}
/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
float *BKE_curve_surf_make_orco(Object *ob)
{
/* Note: this function is used in convertblender only atm, so
* suppose nonzero curve's render resolution should always be used */
Curve *cu = ob->data;
Nurb *nu;
int a, b, tot = 0;
int sizeu, sizev;
int resolu, resolv;
float *fp, *coord_array;
/* first calculate the size of the datablock */
nu = cu->nurb.first;
while (nu) {
/* as we want to avoid the seam in a cyclic nurbs
* texture wrapping, reserve extra orco data space to save these extra needed
* vertex based UV coordinates for the meridian vertices.
* Vertices on the 0/2pi boundary are not duplicated inside the displist but later in
* the renderface/vert construction.
*
* See also convertblender.c: init_render_surf()
*/
resolu = cu->resolu_ren ? cu->resolu_ren : nu->resolu;
resolv = cu->resolv_ren ? cu->resolv_ren : nu->resolv;
sizeu = nu->pntsu * resolu;
sizev = nu->pntsv * resolv;
if (nu->flagu & CU_NURB_CYCLIC) sizeu++;
if (nu->flagv & CU_NURB_CYCLIC) sizev++;
if (nu->pntsv > 1) tot += sizeu * sizev;
nu = nu->next;
}
/* makeNurbfaces wants zeros */
fp = coord_array = MEM_callocN(3 * sizeof(float) * tot, "make_orco");
nu = cu->nurb.first;
while (nu) {
resolu = cu->resolu_ren ? cu->resolu_ren : nu->resolu;
resolv = cu->resolv_ren ? cu->resolv_ren : nu->resolv;
if (nu->pntsv > 1) {
sizeu = nu->pntsu * resolu;
sizev = nu->pntsv * resolv;
if (nu->flagu & CU_NURB_CYCLIC)
sizeu++;
if (nu->flagv & CU_NURB_CYCLIC)
sizev++;
if (cu->flag & CU_UV_ORCO) {
for (b = 0; b < sizeu; b++) {
for (a = 0; a < sizev; a++) {
if (sizev < 2)
fp[0] = 0.0f;
else
fp[0] = -1.0f + 2.0f * ((float)a) / (sizev - 1);
if (sizeu < 2)
fp[1] = 0.0f;
else
fp[1] = -1.0f + 2.0f * ((float)b) / (sizeu - 1);
fp[2] = 0.0;
fp += 3;
}
}
}
else {
int size = (nu->pntsu * resolu) * (nu->pntsv * resolv) * 3 * sizeof(float);
float *_tdata = MEM_callocN(size, "temp data");
float *tdata = _tdata;
BKE_nurb_makeFaces(nu, tdata, 0, resolu, resolv);
for (b = 0; b < sizeu; b++) {
int use_b = b;
if (b == sizeu - 1 && (nu->flagu & CU_NURB_CYCLIC))
use_b = FALSE;
for (a = 0; a < sizev; a++) {
int use_a = a;
if (a == sizev - 1 && (nu->flagv & CU_NURB_CYCLIC))
use_a = FALSE;
tdata = _tdata + 3 * (use_b * (nu->pntsv * resolv) + use_a);
fp[0] = (tdata[0] - cu->loc[0]) / cu->size[0];
fp[1] = (tdata[1] - cu->loc[1]) / cu->size[1];
fp[2] = (tdata[2] - cu->loc[2]) / cu->size[2];
fp += 3;
}
}
MEM_freeN(_tdata);
}
}
nu = nu->next;
}
return coord_array;
}
/* NOTE: This routine is tied to the order of vertex
* built by displist and as passed to the renderer.
*/
float *BKE_curve_make_orco(Scene *scene, Object *ob)
{
Curve *cu = ob->data;
DispList *dl;
int u, v, numVerts;
float *fp, *coord_array;
ListBase disp = {NULL, NULL};
BKE_displist_make_curveTypes_forOrco(scene, ob, &disp);
numVerts = 0;
for (dl = disp.first; dl; dl = dl->next) {
if (dl->type == DL_INDEX3) {
numVerts += dl->nr;
}
else if (dl->type == DL_SURF) {
/* convertblender.c uses the Surface code for creating renderfaces when cyclic U only
* (closed circle beveling)
*/
if (dl->flag & DL_CYCL_U) {
if (dl->flag & DL_CYCL_V)
numVerts += (dl->parts + 1) * (dl->nr + 1);
else
numVerts += dl->parts * (dl->nr + 1);
}
else
numVerts += dl->parts * dl->nr;
}
}
fp = coord_array = MEM_mallocN(3 * sizeof(float) * numVerts, "cu_orco");
for (dl = disp.first; dl; dl = dl->next) {
if (dl->type == DL_INDEX3) {
for (u = 0; u < dl->nr; u++, fp += 3) {
if (cu->flag & CU_UV_ORCO) {
fp[0] = 2.0f * u / (dl->nr - 1) - 1.0f;
fp[1] = 0.0;
fp[2] = 0.0;
}
else {
copy_v3_v3(fp, &dl->verts[u * 3]);
fp[0] = (fp[0] - cu->loc[0]) / cu->size[0];
fp[1] = (fp[1] - cu->loc[1]) / cu->size[1];
fp[2] = (fp[2] - cu->loc[2]) / cu->size[2];
}
}
}
else if (dl->type == DL_SURF) {
int sizeu = dl->nr, sizev = dl->parts;
/* exception as handled in convertblender.c too */
if (dl->flag & DL_CYCL_U) {
sizeu++;
if (dl->flag & DL_CYCL_V)
sizev++;
}
for (u = 0; u < sizev; u++) {
for (v = 0; v < sizeu; v++, fp += 3) {
if (cu->flag & CU_UV_ORCO) {
fp[0] = 2.0f * u / (sizev - 1) - 1.0f;
fp[1] = 2.0f * v / (sizeu - 1) - 1.0f;
fp[2] = 0.0;
}
else {
float *vert;
int realv = v % dl->nr;
int realu = u % dl->parts;
vert = dl->verts + 3 * (dl->nr * realu + realv);
copy_v3_v3(fp, vert);
fp[0] = (fp[0] - cu->loc[0]) / cu->size[0];
fp[1] = (fp[1] - cu->loc[1]) / cu->size[1];
fp[2] = (fp[2] - cu->loc[2]) / cu->size[2];
}
}
}
}
}
BKE_displist_free(&disp);
return coord_array;
}
/* ***************** BEVEL ****************** */
void BKE_curve_bevel_make(Scene *scene, Object *ob, ListBase *disp, int forRender)
{
DispList *dl, *dlnew;
Curve *bevcu, *cu;
float *fp, facx, facy, angle, dangle;
int nr, a;
cu = ob->data;
disp->first = disp->last = NULL;
/* if a font object is being edited, then do nothing */
// XXX if ( ob == obedit && ob->type == OB_FONT ) return;
if (cu->bevobj) {
if (cu->bevobj->type != OB_CURVE)
return;
bevcu = cu->bevobj->data;
if (bevcu->ext1 == 0.0f && bevcu->ext2 == 0.0f) {
ListBase bevdisp = {NULL, NULL};
facx = cu->bevobj->size[0];
facy = cu->bevobj->size[1];
if (forRender) {
BKE_displist_make_curveTypes_forRender(scene, cu->bevobj, &bevdisp, NULL, 0);
dl = bevdisp.first;
}
else {
dl = cu->bevobj->disp.first;
if (dl == NULL) {
BKE_displist_make_curveTypes(scene, cu->bevobj, 0);
dl = cu->bevobj->disp.first;
}
}
while (dl) {
if (ELEM(dl->type, DL_POLY, DL_SEGM)) {
dlnew = MEM_mallocN(sizeof(DispList), "makebevelcurve1");
*dlnew = *dl;
dlnew->verts = MEM_mallocN(3 * sizeof(float) * dl->parts * dl->nr, "makebevelcurve1");
memcpy(dlnew->verts, dl->verts, 3 * sizeof(float) * dl->parts * dl->nr);
if (dlnew->type == DL_SEGM)
dlnew->flag |= (DL_FRONT_CURVE | DL_BACK_CURVE);
BLI_addtail(disp, dlnew);
fp = dlnew->verts;
nr = dlnew->parts * dlnew->nr;
while (nr--) {
fp[2] = fp[1] * facy;
fp[1] = -fp[0] * facx;
fp[0] = 0.0;
fp += 3;
}
}
dl = dl->next;
}
BKE_displist_free(&bevdisp);
}
}
else if (cu->ext1 == 0.0f && cu->ext2 == 0.0f) {
/* pass */
}
else if (cu->ext2 == 0.0f) {
dl = MEM_callocN(sizeof(DispList), "makebevelcurve2");
dl->verts = MEM_mallocN(2 * 3 * sizeof(float), "makebevelcurve2");
BLI_addtail(disp, dl);
dl->type = DL_SEGM;
dl->parts = 1;
dl->flag = DL_FRONT_CURVE | DL_BACK_CURVE;
dl->nr = 2;
fp = dl->verts;
fp[0] = fp[1] = 0.0;
fp[2] = -cu->ext1;
fp[3] = fp[4] = 0.0;
fp[5] = cu->ext1;
}
else if ( (cu->flag & (CU_FRONT | CU_BACK)) == 0 && cu->ext1 == 0.0f) { // we make a full round bevel in that case
nr = 4 + 2 * cu->bevresol;
dl = MEM_callocN(sizeof(DispList), "makebevelcurve p1");
dl->verts = MEM_mallocN(nr * 3 * sizeof(float), "makebevelcurve p1");
BLI_addtail(disp, dl);
dl->type = DL_POLY;
dl->parts = 1;
dl->flag = DL_BACK_CURVE;
dl->nr = nr;
/* a circle */
fp = dl->verts;
dangle = (2.0f * (float)M_PI / (nr));
angle = -(nr - 1) * dangle;
for (a = 0; a < nr; a++) {
fp[0] = 0.0;
fp[1] = (cosf(angle) * (cu->ext2));
fp[2] = (sinf(angle) * (cu->ext2)) - cu->ext1;
angle += dangle;
fp += 3;
}
}
else {
short dnr;
/* bevel now in three parts, for proper vertex normals */
/* part 1, back */
if ((cu->flag & CU_BACK) || !(cu->flag & CU_FRONT)) {
dnr = nr = 2 + cu->bevresol;
if ( (cu->flag & (CU_FRONT | CU_BACK)) == 0)
nr = 3 + 2 * cu->bevresol;
dl = MEM_callocN(sizeof(DispList), "makebevelcurve p1");
dl->verts = MEM_mallocN(nr * 3 * sizeof(float), "makebevelcurve p1");
BLI_addtail(disp, dl);
dl->type = DL_SEGM;
dl->parts = 1;
dl->flag = DL_BACK_CURVE;
dl->nr = nr;
/* half a circle */
fp = dl->verts;
dangle = (0.5 * M_PI / (dnr - 1));
angle = -(nr - 1) * dangle;
for (a = 0; a < nr; a++) {
fp[0] = 0.0;
fp[1] = (float)(cosf(angle) * (cu->ext2));
fp[2] = (float)(sinf(angle) * (cu->ext2)) - cu->ext1;
angle += dangle;
fp += 3;
}
}
/* part 2, sidefaces */
if (cu->ext1 != 0.0f) {
nr = 2;
dl = MEM_callocN(sizeof(DispList), "makebevelcurve p2");
dl->verts = MEM_callocN(nr * 3 * sizeof(float), "makebevelcurve p2");
BLI_addtail(disp, dl);
dl->type = DL_SEGM;
dl->parts = 1;
dl->nr = nr;
fp = dl->verts;
fp[1] = cu->ext2;
fp[2] = -cu->ext1;
fp[4] = cu->ext2;
fp[5] = cu->ext1;
if ( (cu->flag & (CU_FRONT | CU_BACK)) == 0) {
dl = MEM_dupallocN(dl);
dl->verts = MEM_dupallocN(dl->verts);
BLI_addtail(disp, dl);
fp = dl->verts;
fp[1] = -fp[1];
fp[2] = -fp[2];
fp[4] = -fp[4];
fp[5] = -fp[5];
}
}
/* part 3, front */
if ((cu->flag & CU_FRONT) || !(cu->flag & CU_BACK)) {
dnr = nr = 2 + cu->bevresol;
if ( (cu->flag & (CU_FRONT | CU_BACK)) == 0)
nr = 3 + 2 * cu->bevresol;
dl = MEM_callocN(sizeof(DispList), "makebevelcurve p3");
dl->verts = MEM_mallocN(nr * 3 * sizeof(float), "makebevelcurve p3");
BLI_addtail(disp, dl);
dl->type = DL_SEGM;
dl->flag = DL_FRONT_CURVE;
dl->parts = 1;
dl->nr = nr;
/* half a circle */
fp = dl->verts;
angle = 0.0;
dangle = (0.5 * M_PI / (dnr - 1));
for (a = 0; a < nr; a++) {
fp[0] = 0.0;
fp[1] = (float)(cosf(angle) * (cu->ext2));
fp[2] = (float)(sinf(angle) * (cu->ext2)) + cu->ext1;
angle += dangle;
fp += 3;
}
}
}
}
static int cu_isectLL(const float v1[3], const float v2[3], const float v3[3], const float v4[3],
short cox, short coy,
float *lambda, float *mu, float vec[3])
{
/* return:
* -1: collinear
* 0: no intersection of segments
* 1: exact intersection of segments
* 2: cross-intersection of segments
*/
float deler;
deler = (v1[cox] - v2[cox]) * (v3[coy] - v4[coy]) - (v3[cox] - v4[cox]) * (v1[coy] - v2[coy]);
if (deler == 0.0f)
return -1;
*lambda = (v1[coy] - v3[coy]) * (v3[cox] - v4[cox]) - (v1[cox] - v3[cox]) * (v3[coy] - v4[coy]);
*lambda = -(*lambda / deler);
deler = v3[coy] - v4[coy];
if (deler == 0) {
deler = v3[cox] - v4[cox];
*mu = -(*lambda * (v2[cox] - v1[cox]) + v1[cox] - v3[cox]) / deler;
}
else {
*mu = -(*lambda * (v2[coy] - v1[coy]) + v1[coy] - v3[coy]) / deler;
}
vec[cox] = *lambda * (v2[cox] - v1[cox]) + v1[cox];
vec[coy] = *lambda * (v2[coy] - v1[coy]) + v1[coy];
if (*lambda >= 0.0f && *lambda <= 1.0f && *mu >= 0.0f && *mu <= 1.0f) {
if (*lambda == 0.0f || *lambda == 1.0f || *mu == 0.0f || *mu == 1.0f)
return 1;
return 2;
}
return 0;
}
static short bevelinside(BevList *bl1, BevList *bl2)
{
/* is bl2 INSIDE bl1 ? with left-right method and "lambda's" */
/* returns '1' if correct hole */
BevPoint *bevp, *prevbevp;
float min, max, vec[3], hvec1[3], hvec2[3], lab, mu;
int nr, links = 0, rechts = 0, mode;
/* take first vertex of possible hole */
bevp = (BevPoint *)(bl2 + 1);
hvec1[0] = bevp->vec[0];
hvec1[1] = bevp->vec[1];
hvec1[2] = 0.0;
copy_v3_v3(hvec2, hvec1);
hvec2[0] += 1000;
/* test it with all edges of potential surounding poly */
/* count number of transitions left-right */
bevp = (BevPoint *)(bl1 + 1);
nr = bl1->nr;
prevbevp = bevp + (nr - 1);
while (nr--) {
min = prevbevp->vec[1];
max = bevp->vec[1];
if (max < min) {
min = max;
max = prevbevp->vec[1];
}
if (min != max) {
if (min <= hvec1[1] && max >= hvec1[1]) {
/* there's a transition, calc intersection point */
mode = cu_isectLL(prevbevp->vec, bevp->vec, hvec1, hvec2, 0, 1, &lab, &mu, vec);
/* if lab==0.0 or lab==1.0 then the edge intersects exactly a transition
* only allow for one situation: we choose lab= 1.0
*/
if (mode >= 0 && lab != 0.0f) {
if (vec[0] < hvec1[0]) links++;
else rechts++;
}
}
}
prevbevp = bevp;
bevp++;
}
if ( (links & 1) && (rechts & 1) )
return 1;
return 0;
}
struct bevelsort {
float left;
BevList *bl;
int dir;
};
static int vergxcobev(const void *a1, const void *a2)
{
const struct bevelsort *x1 = a1, *x2 = a2;
if (x1->left > x2->left)
return 1;
else if (x1->left < x2->left)
return -1;
return 0;
}
/* this function cannot be replaced with atan2, but why? */
static void calc_bevel_sin_cos(float x1, float y1, float x2, float y2, float *sina, float *cosa)
{
float t01, t02, x3, y3;
t01 = (float)sqrt(x1 * x1 + y1 * y1);
t02 = (float)sqrt(x2 * x2 + y2 * y2);
if (t01 == 0.0f)
t01 = 1.0f;
if (t02 == 0.0f)
t02 = 1.0f;
x1 /= t01;
y1 /= t01;
x2 /= t02;
y2 /= t02;
t02 = x1 * x2 + y1 * y2;
if (fabsf(t02) >= 1.0f)
t02 = 0.5 * M_PI;
else
t02 = (saacos(t02)) / 2.0f;
t02 = sinf(t02);
if (t02 == 0.0f)
t02 = 1.0f;
x3 = x1 - x2;
y3 = y1 - y2;
if (x3 == 0 && y3 == 0) {
x3 = y1;
y3 = -x1;
}
else {
t01 = (float)sqrt(x3 * x3 + y3 * y3);
x3 /= t01;
y3 /= t01;
}
*sina = -y3 / t02;
*cosa = x3 / t02;
}
static void alfa_bezpart(BezTriple *prevbezt, BezTriple *bezt, Nurb *nu, float *tilt_array, float *radius_array,
float *weight_array, int resolu, int stride)
{
BezTriple *pprev, *next, *last;
float fac, dfac, t[4];
int a;
if (tilt_array == NULL && radius_array == NULL)
return;
last = nu->bezt + (nu->pntsu - 1);
/* returns a point */
if (prevbezt == nu->bezt) {
if (nu->flagu & CU_NURB_CYCLIC)
pprev = last;
else
pprev = prevbezt;
}
else
pprev = prevbezt - 1;
/* next point */
if (bezt == last) {
if (nu->flagu & CU_NURB_CYCLIC)
next = nu->bezt;
else
next = bezt;
}
else
next = bezt + 1;
fac = 0.0;
dfac = 1.0f / (float)resolu;
for (a = 0; a < resolu; a++, fac += dfac) {
if (tilt_array) {
if (nu->tilt_interp == KEY_CU_EASE) { /* May as well support for tilt also 2.47 ease interp */
*tilt_array = prevbezt->alfa +
(bezt->alfa - prevbezt->alfa) * (3.0f * fac * fac - 2.0f * fac * fac * fac);
}
else {
key_curve_position_weights(fac, t, nu->tilt_interp);
*tilt_array = t[0] * pprev->alfa + t[1] * prevbezt->alfa + t[2] * bezt->alfa + t[3] * next->alfa;
}
tilt_array = (float *)(((char *)tilt_array) + stride);
}
if (radius_array) {
if (nu->radius_interp == KEY_CU_EASE) {
/* Support 2.47 ease interp
* Note! - this only takes the 2 points into account,
* giving much more localized results to changes in radius, sometimes you want that */
*radius_array = prevbezt->radius +
(bezt->radius - prevbezt->radius) * (3.0f * fac * fac - 2.0f * fac * fac * fac);
}
else {
/* reuse interpolation from tilt if we can */
if (tilt_array == NULL || nu->tilt_interp != nu->radius_interp) {
key_curve_position_weights(fac, t, nu->radius_interp);
}
*radius_array = t[0] * pprev->radius + t[1] * prevbezt->radius +
t[2] * bezt->radius + t[3] * next->radius;
}
radius_array = (float *)(((char *)radius_array) + stride);
}
if (weight_array) {
/* basic interpolation for now, could copy tilt interp too */
*weight_array = prevbezt->weight +
(bezt->weight - prevbezt->weight) * (3.0f * fac * fac - 2.0f * fac * fac * fac);
weight_array = (float *)(((char *)weight_array) + stride);
}
}
}
/* make_bevel_list_3D_* funcs, at a minimum these must
* fill in the bezp->quat and bezp->dir values */
/* correct non-cyclic cases by copying direction and rotation
* values onto the first & last end-points */
static void bevel_list_cyclic_fix_3D(BevList *bl)
{
BevPoint *bevp, *bevp1;
bevp = (BevPoint *)(bl + 1);
bevp1 = bevp + 1;
copy_qt_qt(bevp->quat, bevp1->quat);
copy_v3_v3(bevp->dir, bevp1->dir);
copy_v3_v3(bevp->tan, bevp1->tan);
bevp = (BevPoint *)(bl + 1);
bevp += (bl->nr - 1);
bevp1 = bevp - 1;
copy_qt_qt(bevp->quat, bevp1->quat);
copy_v3_v3(bevp->dir, bevp1->dir);
copy_v3_v3(bevp->tan, bevp1->tan);
}
/* utility for make_bevel_list_3D_* funcs */
static void bevel_list_calc_bisect(BevList *bl)
{
BevPoint *bevp2, *bevp1, *bevp0;
int nr;
bevp2 = (BevPoint *)(bl + 1);
bevp1 = bevp2 + (bl->nr - 1);
bevp0 = bevp1 - 1;
nr = bl->nr;
while (nr--) {
/* totally simple */
bisect_v3_v3v3v3(bevp1->dir, bevp0->vec, bevp1->vec, bevp2->vec);
bevp0 = bevp1;
bevp1 = bevp2;
bevp2++;
}
}
static void bevel_list_flip_tangents(BevList *bl)
{
BevPoint *bevp2, *bevp1, *bevp0;
int nr;
bevp2 = (BevPoint *)(bl + 1);
bevp1 = bevp2 + (bl->nr - 1);
bevp0 = bevp1 - 1;
nr = bl->nr;
while (nr--) {
if (RAD2DEGF(angle_v2v2(bevp0->tan, bevp1->tan)) > 90.0f)
negate_v3(bevp1->tan);
bevp0 = bevp1;
bevp1 = bevp2;
bevp2++;
}
}
/* apply user tilt */
static void bevel_list_apply_tilt(BevList *bl)
{
BevPoint *bevp2, *bevp1;
int nr;
float q[4];
bevp2 = (BevPoint *)(bl + 1);
bevp1 = bevp2 + (bl->nr - 1);
nr = bl->nr;
while (nr--) {
axis_angle_to_quat(q, bevp1->dir, bevp1->alfa);
mul_qt_qtqt(bevp1->quat, q, bevp1->quat);
normalize_qt(bevp1->quat);
bevp1 = bevp2;
bevp2++;
}
}
/* smooth quats, this function should be optimized, it can get slow with many iterations. */
static void bevel_list_smooth(BevList *bl, int smooth_iter)
{
BevPoint *bevp2, *bevp1, *bevp0;
int nr;
float q[4];
float bevp0_quat[4];
int a;
for (a = 0; a < smooth_iter; a++) {
bevp2 = (BevPoint *)(bl + 1);
bevp1 = bevp2 + (bl->nr - 1);
bevp0 = bevp1 - 1;
nr = bl->nr;
if (bl->poly == -1) { /* check its not cyclic */
/* skip the first point */
/* bevp0 = bevp1; */
bevp1 = bevp2;
bevp2++;
nr--;
bevp0 = bevp1;
bevp1 = bevp2;
bevp2++;
nr--;
}
copy_qt_qt(bevp0_quat, bevp0->quat);
while (nr--) {
/* interpolate quats */
float zaxis[3] = {0, 0, 1}, cross[3], q2[4];
interp_qt_qtqt(q, bevp0_quat, bevp2->quat, 0.5);
normalize_qt(q);
mul_qt_v3(q, zaxis);
cross_v3_v3v3(cross, zaxis, bevp1->dir);
axis_angle_to_quat(q2, cross, angle_normalized_v3v3(zaxis, bevp1->dir));
normalize_qt(q2);
copy_qt_qt(bevp0_quat, bevp1->quat);
mul_qt_qtqt(q, q2, q);
interp_qt_qtqt(bevp1->quat, bevp1->quat, q, 0.5);
normalize_qt(bevp1->quat);
/* bevp0 = bevp1; */ /* UNUSED */
bevp1 = bevp2;
bevp2++;
}
}
}
static void make_bevel_list_3D_zup(BevList *bl)
{
BevPoint *bevp2, *bevp1, *bevp0; /* standard for all make_bevel_list_3D_* funcs */
int nr;
bevp2 = (BevPoint *)(bl + 1);
bevp1 = bevp2 + (bl->nr - 1);
bevp0 = bevp1 - 1;
nr = bl->nr;
while (nr--) {
/* totally simple */
bisect_v3_v3v3v3(bevp1->dir, bevp0->vec, bevp1->vec, bevp2->vec);
vec_to_quat(bevp1->quat, bevp1->dir, 5, 1);
bevp0 = bevp1;
bevp1 = bevp2;
bevp2++;
}
}
static void make_bevel_list_3D_minimum_twist(BevList *bl)
{
BevPoint *bevp2, *bevp1, *bevp0; /* standard for all make_bevel_list_3D_* funcs */
int nr;
float q[4];
bevel_list_calc_bisect(bl);
bevp2 = (BevPoint *)(bl + 1);
bevp1 = bevp2 + (bl->nr - 1);
bevp0 = bevp1 - 1;
nr = bl->nr;
while (nr--) {
if (nr + 4 > bl->nr) { /* first time and second time, otherwise first point adjusts last */
vec_to_quat(bevp1->quat, bevp1->dir, 5, 1);
}
else {
float angle = angle_normalized_v3v3(bevp0->dir, bevp1->dir);
if (angle > 0.0f) { /* otherwise we can keep as is */
float cross_tmp[3];
cross_v3_v3v3(cross_tmp, bevp0->dir, bevp1->dir);
axis_angle_to_quat(q, cross_tmp, angle);
mul_qt_qtqt(bevp1->quat, q, bevp0->quat);
}
else {
copy_qt_qt(bevp1->quat, bevp0->quat);
}
}
bevp0 = bevp1;
bevp1 = bevp2;
bevp2++;
}
if (bl->poly != -1) { /* check for cyclic */
/* Need to correct for the start/end points not matching
* do this by calculating the tilt angle difference, then apply
* the rotation gradually over the entire curve
*
* note that the split is between last and second last, rather than first/last as youd expect.
*
* real order is like this
* 0,1,2,3,4 --> 1,2,3,4,0
*
* this is why we compare last with second last
* */
float vec_1[3] = {0, 1, 0}, vec_2[3] = {0, 1, 0}, angle, ang_fac, cross_tmp[3];
BevPoint *bevp_first;
BevPoint *bevp_last;
bevp_first = (BevPoint *)(bl + 1);
bevp_first += bl->nr - 1;
bevp_last = bevp_first;
bevp_last--;
/* quats and vec's are normalized, should not need to re-normalize */
mul_qt_v3(bevp_first->quat, vec_1);
mul_qt_v3(bevp_last->quat, vec_2);
normalize_v3(vec_1);
normalize_v3(vec_2);
/* align the vector, can avoid this and it looks 98% OK but
* better to align the angle quat roll's before comparing */
{
cross_v3_v3v3(cross_tmp, bevp_last->dir, bevp_first->dir);
angle = angle_normalized_v3v3(bevp_first->dir, bevp_last->dir);
axis_angle_to_quat(q, cross_tmp, angle);
mul_qt_v3(q, vec_2);
}
angle = angle_normalized_v3v3(vec_1, vec_2);
/* flip rotation if needs be */
cross_v3_v3v3(cross_tmp, vec_1, vec_2);
normalize_v3(cross_tmp);
if (angle_normalized_v3v3(bevp_first->dir, cross_tmp) < DEG2RADF(90.0f))
angle = -angle;
bevp2 = (BevPoint *)(bl + 1);
bevp1 = bevp2 + (bl->nr - 1);
bevp0 = bevp1 - 1;
nr = bl->nr;
while (nr--) {
ang_fac = angle * (1.0f - ((float)nr / bl->nr)); /* also works */
axis_angle_to_quat(q, bevp1->dir, ang_fac);
mul_qt_qtqt(bevp1->quat, q, bevp1->quat);
bevp0 = bevp1;
bevp1 = bevp2;
bevp2++;
}
}
}
static void make_bevel_list_3D_tangent(BevList *bl)
{
BevPoint *bevp2, *bevp1, *bevp0; /* standard for all make_bevel_list_3D_* funcs */
int nr;
float bevp0_tan[3];
bevel_list_calc_bisect(bl);
if (bl->poly == -1) /* check its not cyclic */
bevel_list_cyclic_fix_3D(bl); // XXX - run this now so tangents will be right before doing the flipping
bevel_list_flip_tangents(bl);
/* correct the tangents */
bevp2 = (BevPoint *)(bl + 1);
bevp1 = bevp2 + (bl->nr - 1);
bevp0 = bevp1 - 1;
nr = bl->nr;
while (nr--) {
float cross_tmp[3];
cross_v3_v3v3(cross_tmp, bevp1->tan, bevp1->dir);
cross_v3_v3v3(bevp1->tan, cross_tmp, bevp1->dir);
normalize_v3(bevp1->tan);
bevp0 = bevp1;
bevp1 = bevp2;
bevp2++;
}
/* now for the real twist calc */
bevp2 = (BevPoint *)(bl + 1);
bevp1 = bevp2 + (bl->nr - 1);
bevp0 = bevp1 - 1;
copy_v3_v3(bevp0_tan, bevp0->tan);
nr = bl->nr;
while (nr--) {
/* make perpendicular, modify tan in place, is ok */
float cross_tmp[3];
float zero[3] = {0, 0, 0};
cross_v3_v3v3(cross_tmp, bevp1->tan, bevp1->dir);
normalize_v3(cross_tmp);
tri_to_quat(bevp1->quat, zero, cross_tmp, bevp1->tan); /* XXX - could be faster */
/* bevp0 = bevp1; */ /* UNUSED */
bevp1 = bevp2;
bevp2++;
}
}
static void make_bevel_list_3D(BevList *bl, int smooth_iter, int twist_mode)
{
switch (twist_mode) {
case CU_TWIST_TANGENT:
make_bevel_list_3D_tangent(bl);
break;
case CU_TWIST_MINIMUM:
make_bevel_list_3D_minimum_twist(bl);
break;
default: /* CU_TWIST_Z_UP default, pre 2.49c */
make_bevel_list_3D_zup(bl);
}
if (bl->poly == -1) /* check its not cyclic */
bevel_list_cyclic_fix_3D(bl);
if (smooth_iter)
bevel_list_smooth(bl, smooth_iter);
bevel_list_apply_tilt(bl);
}
/* only for 2 points */
static void make_bevel_list_segment_3D(BevList *bl)
{
float q[4];
BevPoint *bevp2 = (BevPoint *)(bl + 1);
BevPoint *bevp1 = bevp2 + 1;
/* simple quat/dir */
sub_v3_v3v3(bevp1->dir, bevp1->vec, bevp2->vec);
normalize_v3(bevp1->dir);
vec_to_quat(bevp1->quat, bevp1->dir, 5, 1);
axis_angle_to_quat(q, bevp1->dir, bevp1->alfa);
mul_qt_qtqt(bevp1->quat, q, bevp1->quat);
normalize_qt(bevp1->quat);
copy_v3_v3(bevp2->dir, bevp1->dir);
copy_qt_qt(bevp2->quat, bevp1->quat);
}
/* only for 2 points */
static void make_bevel_list_segment_2D(BevList *bl)
{
BevPoint *bevp2 = (BevPoint *)(bl + 1);
BevPoint *bevp1 = bevp2 + 1;
const float x1 = bevp1->vec[0] - bevp2->vec[0];
const float y1 = bevp1->vec[1] - bevp2->vec[1];
calc_bevel_sin_cos(x1, y1, -x1, -y1, &(bevp1->sina), &(bevp1->cosa));
bevp2->sina = bevp1->sina;
bevp2->cosa = bevp1->cosa;
/* fill in dir & quat */
make_bevel_list_segment_3D(bl);
}
static void make_bevel_list_2D(BevList *bl)
{
/* note: bevp->dir and bevp->quat are not needed for beveling but are
* used when making a path from a 2D curve, therefor they need to be set - Campbell */
BevPoint *bevp2 = (BevPoint *)(bl + 1);
BevPoint *bevp1 = bevp2 + (bl->nr - 1);
BevPoint *bevp0 = bevp1 - 1;
int nr;
nr = bl->nr;
while (nr--) {
const float x1 = bevp1->vec[0] - bevp0->vec[0];
const float x2 = bevp1->vec[0] - bevp2->vec[0];
const float y1 = bevp1->vec[1] - bevp0->vec[1];
const float y2 = bevp1->vec[1] - bevp2->vec[1];
calc_bevel_sin_cos(x1, y1, x2, y2, &(bevp1->sina), &(bevp1->cosa));
/* from: make_bevel_list_3D_zup, could call but avoid a second loop.
* no need for tricky tilt calculation as with 3D curves */
bisect_v3_v3v3v3(bevp1->dir, bevp0->vec, bevp1->vec, bevp2->vec);
vec_to_quat(bevp1->quat, bevp1->dir, 5, 1);
/* done with inline make_bevel_list_3D_zup */
bevp0 = bevp1;
bevp1 = bevp2;
bevp2++;
}
/* correct non-cyclic cases */
if (bl->poly == -1) {
BevPoint *bevp = (BevPoint *)(bl + 1);
bevp1 = bevp + 1;
bevp->sina = bevp1->sina;
bevp->cosa = bevp1->cosa;
bevp = (BevPoint *)(bl + 1);
bevp += (bl->nr - 1);
bevp1 = bevp - 1;
bevp->sina = bevp1->sina;
bevp->cosa = bevp1->cosa;
/* correct for the dir/quat, see above why its needed */
bevel_list_cyclic_fix_3D(bl);
}
}
void BKE_curve_bevelList_make(Object *ob)
{
/*
* - convert all curves to polys, with indication of resol and flags for double-vertices
* - possibly; do a smart vertice removal (in case Nurb)
* - separate in individual blicks with BoundBox
* - AutoHole detection
*/
Curve *cu;
Nurb *nu;
BezTriple *bezt, *prevbezt;
BPoint *bp;
BevList *bl, *blnew, *blnext;
BevPoint *bevp, *bevp2, *bevp1 = NULL, *bevp0;
float min, inp;
struct bevelsort *sortdata, *sd, *sd1;
int a, b, nr, poly, resolu = 0, len = 0;
int do_tilt, do_radius, do_weight;
int is_editmode = 0;
/* this function needs an object, because of tflag and upflag */
cu = ob->data;
/* do we need to calculate the radius for each point? */
/* do_radius = (cu->bevobj || cu->taperobj || (cu->flag & CU_FRONT) || (cu->flag & CU_BACK)) ? 0 : 1; */
/* STEP 1: MAKE POLYS */
BLI_freelistN(&(cu->bev));
if (cu->editnurb && ob->type != OB_FONT) {
ListBase *nurbs = BKE_curve_editNurbs_get(cu);
nu = nurbs->first;
is_editmode = 1;
}
else {
nu = cu->nurb.first;
}
for (; nu; nu = nu->next) {
if (nu->hide && is_editmode)
continue;
/* check if we will calculate tilt data */
do_tilt = CU_DO_TILT(cu, nu);
do_radius = CU_DO_RADIUS(cu, nu); /* normal display uses the radius, better just to calculate them */
do_weight = TRUE;
/* check we are a single point? also check we are not a surface and that the orderu is sane,
* enforced in the UI but can go wrong possibly */
if (!BKE_nurb_check_valid_u(nu)) {
bl = MEM_callocN(sizeof(BevList) + 1 * sizeof(BevPoint), "makeBevelList1");
BLI_addtail(&(cu->bev), bl);
bl->nr = 0;
}
else {
if (G.is_rendering && cu->resolu_ren != 0)
resolu = cu->resolu_ren;
else
resolu = nu->resolu;
if (nu->type == CU_POLY) {
len = nu->pntsu;
bl = MEM_callocN(sizeof(BevList) + len * sizeof(BevPoint), "makeBevelList2");
BLI_addtail(&(cu->bev), bl);
if (nu->flagu & CU_NURB_CYCLIC) bl->poly = 0;
else bl->poly = -1;
bl->nr = len;
bl->dupe_nr = 0;
bevp = (BevPoint *)(bl + 1);
bp = nu->bp;
while (len--) {
copy_v3_v3(bevp->vec, bp->vec);
bevp->alfa = bp->alfa;
bevp->radius = bp->radius;
bevp->weight = bp->weight;
bevp->split_tag = TRUE;
bevp++;
bp++;
}
}
else if (nu->type == CU_BEZIER) {
/* in case last point is not cyclic */
len = resolu * (nu->pntsu + (nu->flagu & CU_NURB_CYCLIC) - 1) + 1;
bl = MEM_callocN(sizeof(BevList) + len * sizeof(BevPoint), "makeBevelBPoints");
BLI_addtail(&(cu->bev), bl);
if (nu->flagu & CU_NURB_CYCLIC) bl->poly = 0;
else bl->poly = -1;
bevp = (BevPoint *)(bl + 1);
a = nu->pntsu - 1;
bezt = nu->bezt;
if (nu->flagu & CU_NURB_CYCLIC) {
a++;
prevbezt = nu->bezt + (nu->pntsu - 1);
}
else {
prevbezt = bezt;
bezt++;
}
while (a--) {
if (prevbezt->h2 == HD_VECT && bezt->h1 == HD_VECT) {
copy_v3_v3(bevp->vec, prevbezt->vec[1]);
bevp->alfa = prevbezt->alfa;
bevp->radius = prevbezt->radius;
bevp->weight = prevbezt->weight;
bevp->split_tag = TRUE;
bevp->dupe_tag = FALSE;
bevp++;
bl->nr++;
bl->dupe_nr = 1;
}
else {
/* always do all three, to prevent data hanging around */
int j;
/* BevPoint must stay aligned to 4 so sizeof(BevPoint)/sizeof(float) works */
for (j = 0; j < 3; j++) {
BKE_curve_forward_diff_bezier(prevbezt->vec[1][j], prevbezt->vec[2][j],
bezt->vec[0][j], bezt->vec[1][j],
&(bevp->vec[j]), resolu, sizeof(BevPoint));
}
/* if both arrays are NULL do nothiong */
alfa_bezpart(prevbezt, bezt, nu,
do_tilt ? &bevp->alfa : NULL,
do_radius ? &bevp->radius : NULL,
do_weight ? &bevp->weight : NULL,
resolu, sizeof(BevPoint));
if (cu->twist_mode == CU_TWIST_TANGENT) {
forward_diff_bezier_cotangent(prevbezt->vec[1], prevbezt->vec[2],
bezt->vec[0], bezt->vec[1],
bevp->tan, resolu, sizeof(BevPoint));
}
/* indicate with handlecodes double points */
if (prevbezt->h1 == prevbezt->h2) {
if (prevbezt->h1 == 0 || prevbezt->h1 == HD_VECT)
bevp->split_tag = TRUE;
}
else {
if (prevbezt->h1 == 0 || prevbezt->h1 == HD_VECT)
bevp->split_tag = TRUE;
else if (prevbezt->h2 == 0 || prevbezt->h2 == HD_VECT)
bevp->split_tag = TRUE;
}
bl->nr += resolu;
bevp += resolu;
}
prevbezt = bezt;
bezt++;
}
if ((nu->flagu & CU_NURB_CYCLIC) == 0) { /* not cyclic: endpoint */
copy_v3_v3(bevp->vec, prevbezt->vec[1]);
bevp->alfa = prevbezt->alfa;
bevp->radius = prevbezt->radius;
bevp->weight = prevbezt->weight;
bl->nr++;
}
}
else if (nu->type == CU_NURBS) {
if (nu->pntsv == 1) {
len = (resolu * SEGMENTSU(nu));
bl = MEM_callocN(sizeof(BevList) + len * sizeof(BevPoint), "makeBevelList3");
BLI_addtail(&(cu->bev), bl);
bl->nr = len;
bl->dupe_nr = 0;
if (nu->flagu & CU_NURB_CYCLIC) bl->poly = 0;
else bl->poly = -1;
bevp = (BevPoint *)(bl + 1);
BKE_nurb_makeCurve(nu, &bevp->vec[0],
do_tilt ? &bevp->alfa : NULL,
do_radius ? &bevp->radius : NULL,
do_weight ? &bevp->weight : NULL,
resolu, sizeof(BevPoint));
}
}
}
}
/* STEP 2: DOUBLE POINTS AND AUTOMATIC RESOLUTION, REDUCE DATABLOCKS */
bl = cu->bev.first;
while (bl) {
if (bl->nr) { /* null bevel items come from single points */
nr = bl->nr;
bevp1 = (BevPoint *)(bl + 1);
bevp0 = bevp1 + (nr - 1);
nr--;
while (nr--) {
if (fabsf(bevp0->vec[0] - bevp1->vec[0]) < 0.00001f) {
if (fabsf(bevp0->vec[1] - bevp1->vec[1]) < 0.00001f) {
if (fabsf(bevp0->vec[2] - bevp1->vec[2]) < 0.00001f) {
bevp0->dupe_tag = TRUE;
bl->dupe_nr++;
}
}
}
bevp0 = bevp1;
bevp1++;
}
}
bl = bl->next;
}
bl = cu->bev.first;
while (bl) {
blnext = bl->next;
if (bl->nr && bl->dupe_nr) {
nr = bl->nr - bl->dupe_nr + 1; /* +1 because vectorbezier sets flag too */
blnew = MEM_mallocN(sizeof(BevList) + nr * sizeof(BevPoint), "makeBevelList4");
memcpy(blnew, bl, sizeof(BevList));
blnew->nr = 0;
BLI_remlink(&(cu->bev), bl);
BLI_insertlinkbefore(&(cu->bev), blnext, blnew); /* to make sure bevlijst is tuned with nurblist */
bevp0 = (BevPoint *)(bl + 1);
bevp1 = (BevPoint *)(blnew + 1);
nr = bl->nr;
while (nr--) {
if (bevp0->dupe_tag == 0) {
memcpy(bevp1, bevp0, sizeof(BevPoint));
bevp1++;
blnew->nr++;
}
bevp0++;
}
MEM_freeN(bl);
blnew->dupe_nr = 0;
}
bl = blnext;
}
/* STEP 3: POLYS COUNT AND AUTOHOLE */
bl = cu->bev.first;
poly = 0;
while (bl) {
if (bl->nr && bl->poly >= 0) {
poly++;
bl->poly = poly;
bl->hole = 0;
}
bl = bl->next;
}
/* find extreme left points, also test (turning) direction */
if (poly > 0) {
sd = sortdata = MEM_mallocN(sizeof(struct bevelsort) * poly, "makeBevelList5");
bl = cu->bev.first;
while (bl) {
if (bl->poly > 0) {
min = 300000.0;
bevp = (BevPoint *)(bl + 1);
nr = bl->nr;
while (nr--) {
if (min > bevp->vec[0]) {
min = bevp->vec[0];
bevp1 = bevp;
}
bevp++;
}
sd->bl = bl;
sd->left = min;
bevp = (BevPoint *)(bl + 1);
if (bevp1 == bevp)
bevp0 = bevp + (bl->nr - 1);
else
bevp0 = bevp1 - 1;
bevp = bevp + (bl->nr - 1);
if (bevp1 == bevp)
bevp2 = (BevPoint *)(bl + 1);
else
bevp2 = bevp1 + 1;
inp = ((bevp1->vec[0] - bevp0->vec[0]) * (bevp0->vec[1] - bevp2->vec[1]) +
(bevp0->vec[1] - bevp1->vec[1]) * (bevp0->vec[0] - bevp2->vec[0]));
if (inp > 0.0f)
sd->dir = 1;
else
sd->dir = 0;
sd++;
}
bl = bl->next;
}
qsort(sortdata, poly, sizeof(struct bevelsort), vergxcobev);
sd = sortdata + 1;
for (a = 1; a < poly; a++, sd++) {
bl = sd->bl; /* is bl a hole? */
sd1 = sortdata + (a - 1);
for (b = a - 1; b >= 0; b--, sd1--) { /* all polys to the left */
if (bevelinside(sd1->bl, bl)) {
bl->hole = 1 - sd1->bl->hole;
break;
}
}
}
/* turning direction */
if ((cu->flag & CU_3D) == 0) {
sd = sortdata;
for (a = 0; a < poly; a++, sd++) {
if (sd->bl->hole == sd->dir) {
bl = sd->bl;
bevp1 = (BevPoint *)(bl + 1);
bevp2 = bevp1 + (bl->nr - 1);
nr = bl->nr / 2;
while (nr--) {
SWAP(BevPoint, *bevp1, *bevp2);
bevp1++;
bevp2--;
}
}
}
}
MEM_freeN(sortdata);
}
/* STEP 4: 2D-COSINES or 3D ORIENTATION */
if ((cu->flag & CU_3D) == 0) {
/* 2D Curves */
for (bl = cu->bev.first; bl; bl = bl->next) {
if (bl->nr < 2) {
/* do nothing */
}
else if (bl->nr == 2) { /* 2 pnt, treat separate */
make_bevel_list_segment_2D(bl);
}
else {
make_bevel_list_2D(bl);
}
}
}
else {
/* 3D Curves */
for (bl = cu->bev.first; bl; bl = bl->next) {
if (bl->nr < 2) {
/* do nothing */
}
else if (bl->nr == 2) { /* 2 pnt, treat separate */
make_bevel_list_segment_3D(bl);
}
else {
make_bevel_list_3D(bl, (int)(resolu * cu->twist_smooth), cu->twist_mode);
}
}
}
}
/* ****************** HANDLES ************** */
/*
* handlecodes:
* 0: nothing, 1:auto, 2:vector, 3:aligned
*/
/* mode: is not zero when FCurve, is 2 when forced horizontal for autohandles */
static void calchandleNurb_intern(BezTriple *bezt, BezTriple *prev, BezTriple *next, int mode, int skip_align)
{
float *p1, *p2, *p3, pt[3];
float dvec_a[3], dvec_b[3];
float len, len_a, len_b;
const float eps = 1e-5;
if (bezt->h1 == 0 && bezt->h2 == 0) {
return;
}
p2 = bezt->vec[1];
if (prev == NULL) {
p3 = next->vec[1];
pt[0] = 2.0f * p2[0] - p3[0];
pt[1] = 2.0f * p2[1] - p3[1];
pt[2] = 2.0f * p2[2] - p3[2];
p1 = pt;
}
else {
p1 = prev->vec[1];
}
if (next == NULL) {
pt[0] = 2.0f * p2[0] - p1[0];
pt[1] = 2.0f * p2[1] - p1[1];
pt[2] = 2.0f * p2[2] - p1[2];
p3 = pt;
}
else {
p3 = next->vec[1];
}
sub_v3_v3v3(dvec_a, p2, p1);
sub_v3_v3v3(dvec_b, p3, p2);
if (mode != 0) {
len_a = dvec_a[0];
len_b = dvec_b[0];
}
else {
len_a = len_v3(dvec_a);
len_b = len_v3(dvec_b);
}
if (len_a == 0.0f) len_a = 1.0f;
if (len_b == 0.0f) len_b = 1.0f;
if (ELEM(bezt->h1, HD_AUTO, HD_AUTO_ANIM) || ELEM(bezt->h2, HD_AUTO, HD_AUTO_ANIM)) { /* auto */
float tvec[3];
tvec[0] = dvec_b[0] / len_b + dvec_a[0] / len_a;
tvec[1] = dvec_b[1] / len_b + dvec_a[1] / len_a;
tvec[2] = dvec_b[2] / len_b + dvec_a[2] / len_a;
len = len_v3(tvec) * 2.5614f;
if (len != 0.0f) {
int leftviolate = 0, rightviolate = 0; /* for mode==2 */
if (len_a > 5.0f * len_b)
len_a = 5.0f * len_b;
if (len_b > 5.0f * len_a)
len_b = 5.0f * len_a;
if (ELEM(bezt->h1, HD_AUTO, HD_AUTO_ANIM)) {
len_a /= len;
madd_v3_v3v3fl(p2 - 3, p2, tvec, -len_a);
if ((bezt->h1 == HD_AUTO_ANIM) && next && prev) { /* keep horizontal if extrema */
float ydiff1 = prev->vec[1][1] - bezt->vec[1][1];
float ydiff2 = next->vec[1][1] - bezt->vec[1][1];
if ((ydiff1 <= 0.0f && ydiff2 <= 0.0f) || (ydiff1 >= 0.0f && ydiff2 >= 0.0f)) {
bezt->vec[0][1] = bezt->vec[1][1];
}
else { /* handles should not be beyond y coord of two others */
if (ydiff1 <= 0.0f) {
if (prev->vec[1][1] > bezt->vec[0][1]) {
bezt->vec[0][1] = prev->vec[1][1];
leftviolate = 1;
}
}
else {
if (prev->vec[1][1] < bezt->vec[0][1]) {
bezt->vec[0][1] = prev->vec[1][1];
leftviolate = 1;
}
}
}
}
}
if (ELEM(bezt->h2, HD_AUTO, HD_AUTO_ANIM)) {
len_b /= len;
madd_v3_v3v3fl(p2 + 3, p2, tvec, len_b);
if ((bezt->h2 == HD_AUTO_ANIM) && next && prev) { /* keep horizontal if extrema */
float ydiff1 = prev->vec[1][1] - bezt->vec[1][1];
float ydiff2 = next->vec[1][1] - bezt->vec[1][1];
if ( (ydiff1 <= 0.0f && ydiff2 <= 0.0f) || (ydiff1 >= 0.0f && ydiff2 >= 0.0f) ) {
bezt->vec[2][1] = bezt->vec[1][1];
}
else { /* andles should not be beyond y coord of two others */
if (ydiff1 <= 0.0f) {
if (next->vec[1][1] < bezt->vec[2][1]) {
bezt->vec[2][1] = next->vec[1][1];
rightviolate = 1;
}
}
else {
if (next->vec[1][1] > bezt->vec[2][1]) {
bezt->vec[2][1] = next->vec[1][1];
rightviolate = 1;
}
}
}
}
}
if (leftviolate || rightviolate) { /* align left handle */
float h1[3], h2[3];
float dot;
sub_v3_v3v3(h1, p2 - 3, p2);
sub_v3_v3v3(h2, p2, p2 + 3);
len_a = normalize_v3(h1);
len_b = normalize_v3(h2);
dot = dot_v3v3(h1, h2);
if (leftviolate) {
mul_v3_fl(h1, dot * len_b);
sub_v3_v3v3(p2 + 3, p2, h1);
}
else {
mul_v3_fl(h2, dot * len_a);
add_v3_v3v3(p2 - 3, p2, h2);
}
}
}
}
if (bezt->h1 == HD_VECT) { /* vector */
madd_v3_v3v3fl(p2 - 3, p2, dvec_a, -1.0f / 3.0f);
}
if (bezt->h2 == HD_VECT) {
madd_v3_v3v3fl(p2 + 3, p2, dvec_b, 1.0f / 3.0f);
}
if (skip_align) {
/* handles need to be updated during animation and applying stuff like hooks,
* but in such situations it's quite difficult to distinguish in which order
* align handles should be aligned so skip them for now */
return;
}
len_b = len_v3v3(p2, p2 + 3);
len_a = len_v3v3(p2, p2 - 3);
if (len_a == 0.0f)
len_a = 1.0f;
if (len_b == 0.0f)
len_b = 1.0f;
if (bezt->f1 & SELECT) { /* order of calculation */
if (bezt->h2 == HD_ALIGN) { /* aligned */
if (len_a > eps) {
len = len_b / len_a;
p2[3] = p2[0] + len * (p2[0] - p2[-3]);
p2[4] = p2[1] + len * (p2[1] - p2[-2]);
p2[5] = p2[2] + len * (p2[2] - p2[-1]);
}
}
if (bezt->h1 == HD_ALIGN) {
if (len_b > eps) {
len = len_a / len_b;
p2[-3] = p2[0] + len * (p2[0] - p2[3]);
p2[-2] = p2[1] + len * (p2[1] - p2[4]);
p2[-1] = p2[2] + len * (p2[2] - p2[5]);
}
}
}
else {
if (bezt->h1 == HD_ALIGN) {
if (len_b > eps) {
len = len_a / len_b;
p2[-3] = p2[0] + len * (p2[0] - p2[3]);
p2[-2] = p2[1] + len * (p2[1] - p2[4]);
p2[-1] = p2[2] + len * (p2[2] - p2[5]);
}
}
if (bezt->h2 == HD_ALIGN) { /* aligned */
if (len_a > eps) {
len = len_b / len_a;
p2[3] = p2[0] + len * (p2[0] - p2[-3]);
p2[4] = p2[1] + len * (p2[1] - p2[-2]);
p2[5] = p2[2] + len * (p2[2] - p2[-1]);
}
}
}
}
static void calchandlesNurb_intern(Nurb *nu, int skip_align)
{
BezTriple *bezt, *prev, *next;
short a;
if (nu->type != CU_BEZIER)
return;
if (nu->pntsu < 2)
return;
a = nu->pntsu;
bezt = nu->bezt;
if (nu->flagu & CU_NURB_CYCLIC) prev = bezt + (a - 1);
else prev = NULL;
next = bezt + 1;
while (a--) {
calchandleNurb_intern(bezt, prev, next, 0, skip_align);
prev = bezt;
if (a == 1) {
if (nu->flagu & CU_NURB_CYCLIC)
next = nu->bezt;
else
next = NULL;
}
else
next++;
bezt++;
}
}
void BKE_nurb_handle_calc(BezTriple *bezt, BezTriple *prev, BezTriple *next, int mode)
{
calchandleNurb_intern(bezt, prev, next, mode, FALSE);
}
void BKE_nurb_handles_calc(Nurb *nu) /* first, if needed, set handle flags */
{
calchandlesNurb_intern(nu, FALSE);
}
void BKE_nurb_handles_test(Nurb *nu)
{
/* use when something has changed with handles.
* it treats all BezTriples with the following rules:
* PHASE 1: do types have to be altered?
* Auto handles: become aligned when selection status is NOT(000 || 111)
* Vector handles: become 'nothing' when (one half selected AND other not)
* PHASE 2: recalculate handles
*/
BezTriple *bezt;
short flag, a;
if (nu->type != CU_BEZIER) return;
bezt = nu->bezt;
a = nu->pntsu;
while (a--) {
flag = 0;
if (bezt->f1 & SELECT)
flag++;
if (bezt->f2 & SELECT)
flag += 2;
if (bezt->f3 & SELECT)
flag += 4;
if (!(flag == 0 || flag == 7) ) {
if (ELEM(bezt->h1, HD_AUTO, HD_AUTO_ANIM)) { /* auto */
bezt->h1 = HD_ALIGN;
}
if (ELEM(bezt->h2, HD_AUTO, HD_AUTO_ANIM)) { /* auto */
bezt->h2 = HD_ALIGN;
}
if (bezt->h1 == HD_VECT) { /* vector */
if (flag < 4) bezt->h1 = 0;
}
if (bezt->h2 == HD_VECT) { /* vector */
if (flag > 3) bezt->h2 = 0;
}
}
bezt++;
}
BKE_nurb_handles_calc(nu);
}
void BKE_nurb_handles_autocalc(Nurb *nu, int flag)
{
/* checks handle coordinates and calculates type */
BezTriple *bezt2, *bezt1, *bezt0;
int i, align, leftsmall, rightsmall;
if (nu == NULL || nu->bezt == NULL)
return;
bezt2 = nu->bezt;
bezt1 = bezt2 + (nu->pntsu - 1);
bezt0 = bezt1 - 1;
i = nu->pntsu;
while (i--) {
align = leftsmall = rightsmall = 0;
/* left handle: */
if (flag == 0 || (bezt1->f1 & flag) ) {
bezt1->h1 = 0;
/* distance too short: vectorhandle */
if (len_v3v3(bezt1->vec[1], bezt0->vec[1]) < 0.0001f) {
bezt1->h1 = HD_VECT;
leftsmall = 1;
}
else {
/* aligned handle? */
if (dist_to_line_v2(bezt1->vec[1], bezt1->vec[0], bezt1->vec[2]) < 0.0001f) {
align = 1;
bezt1->h1 = HD_ALIGN;
}
/* or vector handle? */
if (dist_to_line_v2(bezt1->vec[0], bezt1->vec[1], bezt0->vec[1]) < 0.0001f)
bezt1->h1 = HD_VECT;
}
}
/* right handle: */
if (flag == 0 || (bezt1->f3 & flag) ) {
bezt1->h2 = 0;
/* distance too short: vectorhandle */
if (len_v3v3(bezt1->vec[1], bezt2->vec[1]) < 0.0001f) {
bezt1->h2 = HD_VECT;
rightsmall = 1;
}
else {
/* aligned handle? */
if (align) bezt1->h2 = HD_ALIGN;
/* or vector handle? */
if (dist_to_line_v2(bezt1->vec[2], bezt1->vec[1], bezt2->vec[1]) < 0.0001f)
bezt1->h2 = HD_VECT;
}
}
if (leftsmall && bezt1->h2 == HD_ALIGN)
bezt1->h2 = 0;
if (rightsmall && bezt1->h1 == HD_ALIGN)
bezt1->h1 = 0;
/* undesired combination: */
if (bezt1->h1 == HD_ALIGN && bezt1->h2 == HD_VECT)
bezt1->h1 = 0;
if (bezt1->h2 == HD_ALIGN && bezt1->h1 == HD_VECT)
bezt1->h2 = 0;
bezt0 = bezt1;
bezt1 = bezt2;
bezt2++;
}
BKE_nurb_handles_calc(nu);
}
void BKE_nurbList_handles_autocalc(ListBase *editnurb, int flag)
{
Nurb *nu;
nu = editnurb->first;
while (nu) {
BKE_nurb_handles_autocalc(nu, flag);
nu = nu->next;
}
}
void BKE_nurbList_handles_set(ListBase *editnurb, short code)
{
/* code==1: set autohandle */
/* code==2: set vectorhandle */
/* code==3 (HD_ALIGN) it toggle, vectorhandles become HD_FREE */
/* code==4: sets icu flag to become IPO_AUTO_HORIZ, horizontal extremes on auto-handles */
/* code==5: Set align, like 3 but no toggle */
/* code==6: Clear align, like 3 but no toggle */
Nurb *nu;
BezTriple *bezt;
short a, ok = 0;
if (code == 1 || code == 2) {
nu = editnurb->first;
while (nu) {
if (nu->type == CU_BEZIER) {
bezt = nu->bezt;
a = nu->pntsu;
while (a--) {
if ((bezt->f1 & SELECT) || (bezt->f3 & SELECT)) {
if (bezt->f1 & SELECT)
bezt->h1 = code;
if (bezt->f3 & SELECT)
bezt->h2 = code;
if (bezt->h1 != bezt->h2) {
if (ELEM(bezt->h1, HD_ALIGN, HD_AUTO))
bezt->h1 = HD_FREE;
if (ELEM(bezt->h2, HD_ALIGN, HD_AUTO))
bezt->h2 = HD_FREE;
}
}
bezt++;
}
BKE_nurb_handles_calc(nu);
}
nu = nu->next;
}
}
else {
/* there is 1 handle not FREE: FREE it all, else make ALIGNED */
nu = editnurb->first;
if (code == 5) {
ok = HD_ALIGN;
}
else if (code == 6) {
ok = HD_FREE;
}
else {
/* Toggle */
while (nu) {
if (nu->type == CU_BEZIER) {
bezt = nu->bezt;
a = nu->pntsu;
while (a--) {
if ((bezt->f1 & SELECT) && bezt->h1) ok = 1;
if ((bezt->f3 & SELECT) && bezt->h2) ok = 1;
if (ok) break;
bezt++;
}
}
nu = nu->next;
}
if (ok) ok = HD_FREE;
else ok = HD_ALIGN;
}
nu = editnurb->first;
while (nu) {
if (nu->type == CU_BEZIER) {
bezt = nu->bezt;
a = nu->pntsu;
while (a--) {
if (bezt->f1 & SELECT) bezt->h1 = ok;
if (bezt->f3 & SELECT) bezt->h2 = ok;
bezt++;
}
BKE_nurb_handles_calc(nu);
}
nu = nu->next;
}
}
}
void BKE_nurb_direction_switch(Nurb *nu)
{
BezTriple *bezt1, *bezt2;
BPoint *bp1, *bp2;
float *fp1, *fp2, *tempf;
int a, b;
if (nu->pntsu == 1 && nu->pntsv == 1) {
return;
}
if (nu->type == CU_BEZIER) {
a = nu->pntsu;
bezt1 = nu->bezt;
bezt2 = bezt1 + (a - 1);
if (a & 1) a += 1; /* if odd, also swap middle content */
a /= 2;
while (a > 0) {
if (bezt1 != bezt2) {
SWAP(BezTriple, *bezt1, *bezt2);
}
swap_v3_v3(bezt1->vec[0], bezt1->vec[2]);
if (bezt1 != bezt2) {
swap_v3_v3(bezt2->vec[0], bezt2->vec[2]);
}
SWAP(char, bezt1->h1, bezt1->h2);
SWAP(char, bezt1->f1, bezt1->f3);
if (bezt1 != bezt2) {
SWAP(char, bezt2->h1, bezt2->h2);
SWAP(char, bezt2->f1, bezt2->f3);
bezt1->alfa = -bezt1->alfa;
bezt2->alfa = -bezt2->alfa;
}
a--;
bezt1++;
bezt2--;
}
}
else if (nu->pntsv == 1) {
a = nu->pntsu;
bp1 = nu->bp;
bp2 = bp1 + (a - 1);
a /= 2;
while (bp1 != bp2 && a > 0) {
SWAP(BPoint, *bp1, *bp2);
a--;
bp1->alfa = -bp1->alfa;
bp2->alfa = -bp2->alfa;
bp1++;
bp2--;
}
if (nu->type == CU_NURBS) {
/* no knots for too short paths */
if (nu->knotsu) {
/* inverse knots */
a = KNOTSU(nu);
fp1 = nu->knotsu;
fp2 = fp1 + (a - 1);
a /= 2;
while (fp1 != fp2 && a > 0) {
SWAP(float, *fp1, *fp2);
a--;
fp1++;
fp2--;
}
/* and make in increasing order again */
a = KNOTSU(nu);
fp1 = nu->knotsu;
fp2 = tempf = MEM_mallocN(sizeof(float) * a, "switchdirect");
while (a--) {
fp2[0] = fabs(fp1[1] - fp1[0]);
fp1++;
fp2++;
}
a = KNOTSU(nu) - 1;
fp1 = nu->knotsu;
fp2 = tempf;
fp1[0] = 0.0;
fp1++;
while (a--) {
fp1[0] = fp1[-1] + fp2[0];
fp1++;
fp2++;
}
MEM_freeN(tempf);
}
}
}
else {
for (b = 0; b < nu->pntsv; b++) {
bp1 = nu->bp + b * nu->pntsu;
a = nu->pntsu;
bp2 = bp1 + (a - 1);
a /= 2;
while (bp1 != bp2 && a > 0) {
SWAP(BPoint, *bp1, *bp2);
a--;
bp1++;
bp2--;
}
}
}
}
float (*BKE_curve_vertexCos_get(Curve * UNUSED(cu), ListBase * lb, int *numVerts_r))[3]
{
int i, numVerts = *numVerts_r = BKE_nurbList_verts_count(lb);
float *co, (*cos)[3] = MEM_mallocN(sizeof(*cos) * numVerts, "cu_vcos");
Nurb *nu;
co = cos[0];
for (nu = lb->first; nu; nu = nu->next) {
if (nu->type == CU_BEZIER) {
BezTriple *bezt = nu->bezt;
for (i = 0; i < nu->pntsu; i++, bezt++) {
copy_v3_v3(co, bezt->vec[0]); co += 3;
copy_v3_v3(co, bezt->vec[1]); co += 3;
copy_v3_v3(co, bezt->vec[2]); co += 3;
}
}
else {
BPoint *bp = nu->bp;
for (i = 0; i < nu->pntsu * nu->pntsv; i++, bp++) {
copy_v3_v3(co, bp->vec); co += 3;
}
}
}
return cos;
}
void BK_curve_vertexCos_apply(Curve *UNUSED(cu), ListBase *lb, float (*vertexCos)[3])
{
float *co = vertexCos[0];
Nurb *nu;
int i;
for (nu = lb->first; nu; nu = nu->next) {
if (nu->type == CU_BEZIER) {
BezTriple *bezt = nu->bezt;
for (i = 0; i < nu->pntsu; i++, bezt++) {
copy_v3_v3(bezt->vec[0], co); co += 3;
copy_v3_v3(bezt->vec[1], co); co += 3;
copy_v3_v3(bezt->vec[2], co); co += 3;
}
}
else {
BPoint *bp = nu->bp;
for (i = 0; i < nu->pntsu * nu->pntsv; i++, bp++) {
copy_v3_v3(bp->vec, co); co += 3;
}
}
calchandlesNurb_intern(nu, TRUE);
}
}
float (*BKE_curve_keyVertexCos_get(Curve * UNUSED(cu), ListBase * lb, float *key))[3]
{
int i, numVerts = BKE_nurbList_verts_count(lb);
float *co, (*cos)[3] = MEM_mallocN(sizeof(*cos) * numVerts, "cu_vcos");
Nurb *nu;
co = cos[0];
for (nu = lb->first; nu; nu = nu->next) {
if (nu->type == CU_BEZIER) {
BezTriple *bezt = nu->bezt;
for (i = 0; i < nu->pntsu; i++, bezt++) {
copy_v3_v3(co, key); co += 3; key += 3;
copy_v3_v3(co, key); co += 3; key += 3;
copy_v3_v3(co, key); co += 3; key += 3;
key += 3; /* skip tilt */
}
}
else {
BPoint *bp = nu->bp;
for (i = 0; i < nu->pntsu * nu->pntsv; i++, bp++) {
copy_v3_v3(co, key); co += 3; key += 3;
key++; /* skip tilt */
}
}
}
return cos;
}
void BKE_curve_keyVertexTilts_apply(Curve *UNUSED(cu), ListBase *lb, float *key)
{
Nurb *nu;
int i;
for (nu = lb->first; nu; nu = nu->next) {
if (nu->type == CU_BEZIER) {
BezTriple *bezt = nu->bezt;
for (i = 0; i < nu->pntsu; i++, bezt++) {
key += 3 * 3;
bezt->alfa = *key;
key += 3;
}
}
else {
BPoint *bp = nu->bp;
for (i = 0; i < nu->pntsu * nu->pntsv; i++, bp++) {
key += 3;
bp->alfa = *key;
key++;
}
}
}
}
int BKE_nurb_check_valid_u(struct Nurb *nu)
{
if (nu == NULL)
return 0;
if (nu->pntsu <= 1)
return 0;
if (nu->type != CU_NURBS)
return 1; /* not a nurb, lets assume its valid */
if (nu->pntsu < nu->orderu) return 0;
if (((nu->flag & CU_NURB_CYCLIC) == 0) && (nu->flagu & CU_NURB_BEZIER)) { /* Bezier U Endpoints */
if (nu->orderu == 4) {
if (nu->pntsu < 5)
return 0; /* bezier with 4 orderu needs 5 points */
}
else {
if (nu->orderu != 3)
return 0; /* order must be 3 or 4 */
}
}
return 1;
}
int BKE_nurb_check_valid_v(struct Nurb *nu)
{
if (nu == NULL)
return 0;
if (nu->pntsv <= 1)
return 0;
if (nu->type != CU_NURBS)
return 1; /* not a nurb, lets assume its valid */
if (nu->pntsv < nu->orderv)
return 0;
if (((nu->flag & CU_NURB_CYCLIC) == 0) && (nu->flagv & CU_NURB_BEZIER)) { /* Bezier V Endpoints */
if (nu->orderv == 4) {
if (nu->pntsv < 5)
return 0; /* bezier with 4 orderu needs 5 points */
}
else {
if (nu->orderv != 3)
return 0; /* order must be 3 or 4 */
}
}
return 1;
}
int BKE_nurb_order_clamp_u(struct Nurb *nu)
{
int change = 0;
if (nu->pntsu < nu->orderu) {
nu->orderu = nu->pntsu;
change = 1;
}
if (((nu->flagu & CU_NURB_CYCLIC) == 0) && (nu->flagu & CU_NURB_BEZIER)) {
CLAMP(nu->orderu, 3, 4);
change = 1;
}
return change;
}
int BKE_nurb_order_clamp_v(struct Nurb *nu)
{
int change = 0;
if (nu->pntsv < nu->orderv) {
nu->orderv = nu->pntsv;
change = 1;
}
if (((nu->flagv & CU_NURB_CYCLIC) == 0) && (nu->flagv & CU_NURB_BEZIER)) {
CLAMP(nu->orderv, 3, 4);
change = 1;
}
return change;
}
/* Get edit nurbs or normal nurbs list */
ListBase *BKE_curve_nurbs_get(Curve *cu)
{
if (cu->editnurb) {
return BKE_curve_editNurbs_get(cu);
}
return &cu->nurb;
}
/* basic vertex data functions */
int BKE_curve_minmax(Curve *cu, float min[3], float max[3])
{
ListBase *nurb_lb = BKE_curve_nurbs_get(cu);
Nurb *nu;
for (nu = nurb_lb->first; nu; nu = nu->next)
BKE_nurb_minmax(nu, min, max);
return (nurb_lb->first != NULL);
}
int BKE_curve_center_median(Curve *cu, float cent[3])
{
ListBase *nurb_lb = BKE_curve_nurbs_get(cu);
Nurb *nu;
int total = 0;
zero_v3(cent);
for (nu = nurb_lb->first; nu; nu = nu->next) {
int i;
if (nu->type == CU_BEZIER) {
BezTriple *bezt;
i = nu->pntsu;
total += i * 3;
for (bezt = nu->bezt; i--; bezt++) {
add_v3_v3(cent, bezt->vec[0]);
add_v3_v3(cent, bezt->vec[1]);
add_v3_v3(cent, bezt->vec[2]);
}
}
else {
BPoint *bp;
i = nu->pntsu * nu->pntsv;
total += i;
for (bp = nu->bp; i--; bp++) {
add_v3_v3(cent, bp->vec);
}
}
}
if (total) {
mul_v3_fl(cent, 1.0f / (float)total);
}
return (total != 0);
}
int BKE_curve_center_bounds(Curve *cu, float cent[3])
{
float min[3], max[3];
INIT_MINMAX(min, max);
if (BKE_curve_minmax(cu, min, max)) {
mid_v3_v3v3(cent, min, max);
return 1;
}
return 0;
}
void BKE_curve_translate(Curve *cu, float offset[3], int do_keys)
{
ListBase *nurb_lb = BKE_curve_nurbs_get(cu);
Nurb *nu;
int i;
for (nu = nurb_lb->first; nu; nu = nu->next) {
BezTriple *bezt;
BPoint *bp;
if (nu->type == CU_BEZIER) {
i = nu->pntsu;
for (bezt = nu->bezt; i--; bezt++) {
add_v3_v3(bezt->vec[0], offset);
add_v3_v3(bezt->vec[1], offset);
add_v3_v3(bezt->vec[2], offset);
}
}
else {
i = nu->pntsu * nu->pntsv;
for (bp = nu->bp; i--; bp++) {
add_v3_v3(bp->vec, offset);
}
}
}
if (do_keys && cu->key) {
KeyBlock *kb;
for (kb = cu->key->block.first; kb; kb = kb->next) {
float *fp = kb->data;
for (i = kb->totelem; i--; fp += 3) {
add_v3_v3(fp, offset);
}
}
}
}
void BKE_curve_delete_material_index(Curve *cu, int index)
{
const int curvetype = BKE_curve_type_get(cu);
if (curvetype == OB_FONT) {
struct CharInfo *info = cu->strinfo;
int i;
for (i = cu->len - 1; i >= 0; i--, info++) {
if (info->mat_nr && info->mat_nr >= index) {
info->mat_nr--;
}
}
}
else {
Nurb *nu;
for (nu = cu->nurb.first; nu; nu = nu->next) {
if (nu->mat_nr && nu->mat_nr >= index) {
nu->mat_nr--;
if (curvetype == OB_CURVE)
nu->charidx--;
}
}
}
}