Files
blender/intern/audaspace/intern/AUD_C-API.cpp

1177 lines
23 KiB
C++
Raw Normal View History

/*
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* Copyright 2009-2011 Jörg Hermann Müller
*
* This file is part of AudaSpace.
*
* Audaspace is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* AudaSpace is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with Audaspace; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* ***** END GPL LICENSE BLOCK *****
*/
2011-02-25 10:21:56 +00:00
/** \file audaspace/intern/AUD_C-API.cpp
* \ingroup audaspaceintern
*/
2010-08-16 18:50:59 +00:00
// needed for INT64_C
#ifndef __STDC_CONSTANT_MACROS
#define __STDC_CONSTANT_MACROS
#endif
#ifdef WITH_PYTHON
#include "AUD_PyInit.h"
#include "AUD_PyAPI.h"
#endif
#include <set>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include "AUD_NULLDevice.h"
#include "AUD_I3DDevice.h"
#include "AUD_I3DHandle.h"
2009-08-21 19:39:28 +00:00
#include "AUD_FileFactory.h"
#include "AUD_FileWriter.h"
#include "AUD_StreamBufferFactory.h"
#include "AUD_DelayFactory.h"
#include "AUD_LimiterFactory.h"
#include "AUD_PingPongFactory.h"
#include "AUD_LoopFactory.h"
#include "AUD_RectifyFactory.h"
#include "AUD_EnvelopeFactory.h"
#include "AUD_LinearResampleFactory.h"
#include "AUD_LowpassFactory.h"
#include "AUD_HighpassFactory.h"
#include "AUD_AccumulatorFactory.h"
#include "AUD_SumFactory.h"
#include "AUD_SquareFactory.h"
#include "AUD_ChannelMapperFactory.h"
#include "AUD_Buffer.h"
#include "AUD_ReadDevice.h"
#include "AUD_IReader.h"
#include "AUD_SequencerFactory.h"
#include "AUD_SequencerEntry.h"
#include "AUD_SilenceFactory.h"
#ifdef WITH_SDL
#include "AUD_SDLDevice.h"
#endif
#ifdef WITH_OPENAL
#include "AUD_OpenALDevice.h"
#endif
#ifdef WITH_JACK
#include "AUD_JackDevice.h"
#endif
#ifdef WITH_FFMPEG
extern "C" {
#include <libavformat/avformat.h>
}
#endif
#include <cassert>
typedef AUD_Reference<AUD_IFactory> AUD_Sound;
typedef AUD_Reference<AUD_ReadDevice> AUD_Device;
typedef AUD_Reference<AUD_IHandle> AUD_Handle;
typedef AUD_Reference<AUD_SequencerEntry> AUD_SEntry;
#define AUD_CAPI_IMPLEMENTATION
#include "AUD_C-API.h"
#ifndef NULL
#define NULL 0
#endif
static AUD_Reference<AUD_IDevice> AUD_device;
static AUD_I3DDevice* AUD_3ddevice;
void AUD_initOnce()
{
#ifdef WITH_FFMPEG
av_register_all();
#endif
}
int AUD_init(AUD_DeviceType device, AUD_DeviceSpecs specs, int buffersize)
{
AUD_Reference<AUD_IDevice> dev;
if(!AUD_device.isNull())
AUD_exit();
try
{
switch(device)
{
case AUD_NULL_DEVICE:
dev = new AUD_NULLDevice();
break;
#ifdef WITH_SDL
case AUD_SDL_DEVICE:
dev = new AUD_SDLDevice(specs, buffersize);
break;
#endif
#ifdef WITH_OPENAL
case AUD_OPENAL_DEVICE:
dev = new AUD_OpenALDevice(specs, buffersize);
break;
#endif
#ifdef WITH_JACK
case AUD_JACK_DEVICE:
dev = new AUD_JackDevice("Blender", specs, buffersize);
break;
#endif
default:
return false;
}
AUD_device = dev;
AUD_3ddevice = dynamic_cast<AUD_I3DDevice*>(AUD_device.get());
return true;
}
catch(AUD_Exception&)
{
return false;
}
}
void AUD_exit()
{
AUD_device = AUD_Reference<AUD_IDevice>();
AUD_3ddevice = NULL;
}
#ifdef WITH_PYTHON
static PyObject* AUD_getCDevice(PyObject* self)
{
if(!AUD_device.isNull())
{
Device* device = (Device*)Device_empty();
if(device != NULL)
{
device->device = new AUD_Reference<AUD_IDevice>(AUD_device);
return (PyObject*)device;
}
}
Py_RETURN_NONE;
}
static PyMethodDef meth_getcdevice[] = {{ "device", (PyCFunction)AUD_getCDevice, METH_NOARGS,
"device()\n\n"
"Returns the application's :class:`Device`.\n\n"
":return: The application's :class:`Device`.\n"
":rtype: :class:`Device`"}};
extern "C" {
extern void* sound_get_factory(void* sound);
}
static PyObject* AUD_getSoundFromPointer(PyObject* self, PyObject* args)
{
long int lptr;
if(PyArg_Parse(args, "l:_sound_from_pointer", &lptr))
{
if(lptr)
{
AUD_Reference<AUD_IFactory>* factory = (AUD_Reference<AUD_IFactory>*) sound_get_factory((void*) lptr);
if(factory)
{
Factory* obj = (Factory*) Factory_empty();
if(obj)
{
obj->factory = new AUD_Reference<AUD_IFactory>(*factory);
return (PyObject*) obj;
}
}
}
}
Py_RETURN_NONE;
}
static PyMethodDef meth_sound_from_pointer[] = {{ "_sound_from_pointer", (PyCFunction)AUD_getSoundFromPointer, METH_O,
"_sound_from_pointer(pointer)\n\n"
"Returns the corresponding :class:`Factory` object.\n\n"
":arg pointer: The pointer to the bSound object as long.\n"
":type pointer: long\n"
":return: The corresponding :class:`Factory` object.\n"
":rtype: :class:`Factory`"}};
PyObject* AUD_initPython()
{
PyObject* module = PyInit_aud();
PyModule_AddObject(module, "device", (PyObject*)PyCFunction_New(meth_getcdevice, NULL));
PyModule_AddObject(module, "_sound_from_pointer", (PyObject*)PyCFunction_New(meth_sound_from_pointer, NULL));
PyDict_SetItemString(PyImport_GetModuleDict(), "aud", module);
return module;
}
PyObject* AUD_getPythonFactory(AUD_Sound* sound)
{
if(sound)
{
Factory* obj = (Factory*) Factory_empty();
if(obj)
{
obj->factory = new AUD_Reference<AUD_IFactory>(*sound);
return (PyObject*) obj;
}
}
return NULL;
}
AUD_Sound* AUD_getPythonSound(PyObject* sound)
{
Factory* factory = checkFactory(sound);
if(!factory)
return NULL;
return new AUD_Reference<AUD_IFactory>(*reinterpret_cast<AUD_Reference<AUD_IFactory>*>(factory->factory));
}
#endif
void AUD_lock()
{
AUD_device->lock();
}
void AUD_unlock()
{
AUD_device->unlock();
}
AUD_SoundInfo AUD_getInfo(AUD_Sound* sound)
{
assert(sound);
AUD_SoundInfo info;
info.specs.channels = AUD_CHANNELS_INVALID;
info.specs.rate = AUD_RATE_INVALID;
info.length = 0.0f;
try
{
AUD_Reference<AUD_IReader> reader = (*sound)->createReader();
if(!reader.isNull())
{
info.specs = reader->getSpecs();
info.length = reader->getLength() / (float) info.specs.rate;
}
}
catch(AUD_Exception&)
{
}
return info;
}
AUD_Sound* AUD_load(const char* filename)
{
assert(filename);
return new AUD_Sound(new AUD_FileFactory(filename));
}
AUD_Sound* AUD_loadBuffer(unsigned char* buffer, int size)
{
assert(buffer);
return new AUD_Sound(new AUD_FileFactory(buffer, size));
}
AUD_Sound* AUD_bufferSound(AUD_Sound* sound)
{
assert(sound);
try
{
return new AUD_Sound(new AUD_StreamBufferFactory(*sound));
}
catch(AUD_Exception&)
{
return NULL;
}
}
AUD_Sound* AUD_delaySound(AUD_Sound* sound, float delay)
{
assert(sound);
try
{
return new AUD_Sound(new AUD_DelayFactory(*sound, delay));
}
catch(AUD_Exception&)
{
return NULL;
}
}
AUD_Sound* AUD_limitSound(AUD_Sound* sound, float start, float end)
{
assert(sound);
try
{
return new AUD_Sound(new AUD_LimiterFactory(*sound, start, end));
}
catch(AUD_Exception&)
{
return NULL;
}
}
AUD_Sound* AUD_pingpongSound(AUD_Sound* sound)
{
assert(sound);
try
{
return new AUD_Sound(new AUD_PingPongFactory(*sound));
}
catch(AUD_Exception&)
{
return NULL;
}
}
AUD_Sound* AUD_loopSound(AUD_Sound* sound)
{
assert(sound);
try
{
return new AUD_Sound(new AUD_LoopFactory(*sound));
}
catch(AUD_Exception&)
{
return NULL;
}
}
int AUD_setLoop(AUD_Handle* handle, int loops)
{
assert(handle);
try
{
return (*handle)->setLoopCount(loops);
}
catch(AUD_Exception&)
{
}
return false;
}
AUD_Sound* AUD_rectifySound(AUD_Sound* sound)
{
assert(sound);
try
{
return new AUD_Sound(new AUD_RectifyFactory(*sound));
}
catch(AUD_Exception&)
{
return NULL;
}
}
void AUD_unload(AUD_Sound* sound)
{
assert(sound);
delete sound;
}
AUD_Handle* AUD_play(AUD_Sound* sound, int keep)
{
assert(sound);
try
{
AUD_Handle handle = AUD_device->play(*sound, keep);
if(!handle.isNull())
return new AUD_Handle(handle);
}
catch(AUD_Exception&)
{
}
return NULL;
}
int AUD_pause(AUD_Handle* handle)
{
assert(handle);
return (*handle)->pause();
}
int AUD_resume(AUD_Handle* handle)
{
assert(handle);
return (*handle)->resume();
}
int AUD_stop(AUD_Handle* handle)
{
assert(handle);
int result = (*handle)->stop();
delete handle;
return result;
}
int AUD_setKeep(AUD_Handle* handle, int keep)
{
assert(handle);
return (*handle)->setKeep(keep);
}
int AUD_seek(AUD_Handle* handle, float seekTo)
{
assert(handle);
return (*handle)->seek(seekTo);
}
float AUD_getPosition(AUD_Handle* handle)
{
assert(handle);
return (*handle)->getPosition();
}
AUD_Status AUD_getStatus(AUD_Handle* handle)
{
assert(handle);
return (*handle)->getStatus();
}
int AUD_setListenerLocation(const float* location)
{
if(AUD_3ddevice)
{
AUD_Vector3 v(location[0], location[1], location[2]);
AUD_3ddevice->setListenerLocation(v);
return true;
}
return false;
}
int AUD_setListenerVelocity(const float* velocity)
{
if(AUD_3ddevice)
{
AUD_Vector3 v(velocity[0], velocity[1], velocity[2]);
AUD_3ddevice->setListenerVelocity(v);
return true;
}
return false;
}
int AUD_setListenerOrientation(const float* orientation)
{
if(AUD_3ddevice)
{
AUD_Quaternion q(orientation[3], orientation[0], orientation[1], orientation[2]);
AUD_3ddevice->setListenerOrientation(q);
return true;
}
return false;
}
int AUD_setSpeedOfSound(float speed)
{
if(AUD_3ddevice)
{
AUD_3ddevice->setSpeedOfSound(speed);
return true;
}
return false;
}
int AUD_setDopplerFactor(float factor)
{
if(AUD_3ddevice)
{
AUD_3ddevice->setDopplerFactor(factor);
return true;
}
return false;
}
int AUD_setDistanceModel(AUD_DistanceModel model)
{
if(AUD_3ddevice)
{
AUD_3ddevice->setDistanceModel(model);
return true;
}
return false;
}
int AUD_setSourceLocation(AUD_Handle* handle, const float* location)
{
assert(handle);
AUD_Reference<AUD_I3DHandle> h(*handle);
if(!h.isNull())
{
AUD_Vector3 v(location[0], location[1], location[2]);
return h->setSourceLocation(v);
}
return false;
}
int AUD_setSourceVelocity(AUD_Handle* handle, const float* velocity)
{
assert(handle);
AUD_Reference<AUD_I3DHandle> h(*handle);
if(!h.isNull())
{
AUD_Vector3 v(velocity[0], velocity[1], velocity[2]);
return h->setSourceVelocity(v);
}
return false;
}
int AUD_setSourceOrientation(AUD_Handle* handle, const float* orientation)
{
assert(handle);
AUD_Reference<AUD_I3DHandle> h(*handle);
if(!h.isNull())
{
AUD_Quaternion q(orientation[3], orientation[0], orientation[1], orientation[2]);
return h->setSourceOrientation(q);
}
return false;
}
int AUD_setRelative(AUD_Handle* handle, int relative)
{
assert(handle);
AUD_Reference<AUD_I3DHandle> h(*handle);
if(!h.isNull())
{
return h->setRelative(relative);
}
return false;
}
int AUD_setVolumeMaximum(AUD_Handle* handle, float volume)
{
assert(handle);
AUD_Reference<AUD_I3DHandle> h(*handle);
if(!h.isNull())
{
return h->setVolumeMaximum(volume);
}
return false;
}
int AUD_setVolumeMinimum(AUD_Handle* handle, float volume)
{
assert(handle);
AUD_Reference<AUD_I3DHandle> h(*handle);
if(!h.isNull())
{
return h->setVolumeMinimum(volume);
}
return false;
}
int AUD_setDistanceMaximum(AUD_Handle* handle, float distance)
{
assert(handle);
AUD_Reference<AUD_I3DHandle> h(*handle);
if(!h.isNull())
{
return h->setDistanceMaximum(distance);
}
return false;
}
int AUD_setDistanceReference(AUD_Handle* handle, float distance)
{
assert(handle);
AUD_Reference<AUD_I3DHandle> h(*handle);
if(!h.isNull())
{
return h->setDistanceReference(distance);
}
return false;
}
int AUD_setAttenuation(AUD_Handle* handle, float factor)
{
assert(handle);
AUD_Reference<AUD_I3DHandle> h(*handle);
if(!h.isNull())
{
return h->setAttenuation(factor);
}
return false;
}
int AUD_setConeAngleOuter(AUD_Handle* handle, float angle)
{
assert(handle);
AUD_Reference<AUD_I3DHandle> h(*handle);
if(!h.isNull())
{
return h->setConeAngleOuter(angle);
}
return false;
}
int AUD_setConeAngleInner(AUD_Handle* handle, float angle)
{
assert(handle);
AUD_Reference<AUD_I3DHandle> h(*handle);
if(!h.isNull())
{
return h->setConeAngleInner(angle);
}
return false;
}
int AUD_setConeVolumeOuter(AUD_Handle* handle, float volume)
{
assert(handle);
AUD_Reference<AUD_I3DHandle> h(*handle);
if(!h.isNull())
{
return h->setConeVolumeOuter(volume);
}
return false;
}
int AUD_setSoundVolume(AUD_Handle* handle, float volume)
{
assert(handle);
try
{
return (*handle)->setVolume(volume);
}
catch(AUD_Exception&) {}
return false;
}
int AUD_setSoundPitch(AUD_Handle* handle, float pitch)
{
assert(handle);
try
{
return (*handle)->setPitch(pitch);
}
catch(AUD_Exception&) {}
return false;
}
AUD_Device* AUD_openReadDevice(AUD_DeviceSpecs specs)
{
try
{
return new AUD_Device(new AUD_ReadDevice(specs));
}
catch(AUD_Exception&)
{
return NULL;
}
}
AUD_Handle* AUD_playDevice(AUD_Device* device, AUD_Sound* sound, float seek)
{
assert(device);
assert(sound);
try
{
AUD_Handle handle = (*device)->play(*sound);
if(!handle.isNull())
{
handle->seek(seek);
return new AUD_Handle(handle);
}
}
catch(AUD_Exception&)
{
}
return NULL;
}
int AUD_setDeviceVolume(AUD_Device* device, float volume)
{
assert(device);
try
{
(*device)->setVolume(volume);
return true;
}
catch(AUD_Exception&) {}
return false;
}
int AUD_readDevice(AUD_Device* device, data_t* buffer, int length)
{
assert(device);
assert(buffer);
try
{
return (*device)->read(buffer, length);
}
catch(AUD_Exception&)
{
return false;
}
}
void AUD_closeReadDevice(AUD_Device* device)
{
assert(device);
try
{
delete device;
}
catch(AUD_Exception&)
{
}
}
float* AUD_readSoundBuffer(const char* filename, float low, float high,
float attack, float release, float threshold,
int accumulate, int additive, int square,
float sthreshold, double samplerate, int* length)
{
AUD_Buffer buffer;
AUD_DeviceSpecs specs;
specs.channels = AUD_CHANNELS_MONO;
specs.rate = (AUD_SampleRate)samplerate;
AUD_Reference<AUD_IFactory> sound;
AUD_Reference<AUD_IFactory> file = new AUD_FileFactory(filename);
AUD_Reference<AUD_IReader> reader = file->createReader();
AUD_SampleRate rate = reader->getSpecs().rate;
sound = new AUD_ChannelMapperFactory(file, specs);
if(high < rate)
sound = new AUD_LowpassFactory(sound, high);
if(low > 0)
sound = new AUD_HighpassFactory(sound, low);;
sound = new AUD_EnvelopeFactory(sound, attack, release, threshold, 0.1f);
sound = new AUD_LinearResampleFactory(sound, specs);
if(square)
sound = new AUD_SquareFactory(sound, sthreshold);
if(accumulate)
sound = new AUD_AccumulatorFactory(sound, additive);
else if(additive)
sound = new AUD_SumFactory(sound);
reader = sound->createReader();
if(reader.isNull())
return NULL;
int len;
int position = 0;
2011-06-21 20:14:53 +00:00
bool eos;
do
{
len = samplerate;
buffer.resize((position + len) * sizeof(float), true);
2011-06-21 20:14:53 +00:00
reader->read(len, eos, buffer.getBuffer() + position);
position += len;
2011-06-21 20:14:53 +00:00
} while(!eos);
float* result = (float*)malloc(position * sizeof(float));
memcpy(result, buffer.getBuffer(), position * sizeof(float));
*length = position;
return result;
}
static void pauseSound(AUD_Handle* handle)
{
assert(handle);
(*handle)->pause();
}
AUD_Handle* AUD_pauseAfter(AUD_Handle* handle, float seconds)
{
AUD_Reference<AUD_IFactory> silence = new AUD_SilenceFactory;
AUD_Reference<AUD_IFactory> limiter = new AUD_LimiterFactory(silence, 0, seconds);
AUD_device->lock();
try
{
AUD_Handle handle2 = AUD_device->play(limiter);
if(!handle2.isNull())
{
handle2->setStopCallback((stopCallback)pauseSound, handle);
AUD_device->unlock();
return new AUD_Handle(handle2);
}
}
catch(AUD_Exception&)
{
}
AUD_device->unlock();
return NULL;
}
AUD_Sound* AUD_createSequencer(float fps, int muted)
{
// specs are changed at a later point!
AUD_Specs specs;
specs.channels = AUD_CHANNELS_STEREO;
specs.rate = AUD_RATE_44100;
AUD_Sound* sequencer = new AUD_Sound(AUD_Reference<AUD_SequencerFactory>(new AUD_SequencerFactory(specs, fps, muted)));
return sequencer;
}
void AUD_destroySequencer(AUD_Sound* sequencer)
{
delete sequencer;
}
void AUD_setSequencerMuted(AUD_Sound* sequencer, int muted)
{
dynamic_cast<AUD_SequencerFactory*>(sequencer->get())->mute(muted);
}
void AUD_setSequencerFPS(AUD_Sound* sequencer, float fps)
{
dynamic_cast<AUD_SequencerFactory*>(sequencer->get())->setFPS(fps);
}
AUD_SEntry* AUD_addSequence(AUD_Sound* sequencer, AUD_Sound* sound,
float begin, float end, float skip)
{
if(!sound)
return new AUD_SEntry(((AUD_SequencerFactory*)sequencer->get())->add(AUD_Sound(), begin, end, skip));
return new AUD_SEntry(((AUD_SequencerFactory*)sequencer->get())->add(*sound, begin, end, skip));
}
void AUD_removeSequence(AUD_Sound* sequencer, AUD_SEntry* entry)
{
dynamic_cast<AUD_SequencerFactory*>(sequencer->get())->remove(*entry);
delete entry;
}
void AUD_moveSequence(AUD_SEntry* entry, float begin, float end, float skip)
{
(*entry)->move(begin, end, skip);
}
void AUD_muteSequence(AUD_SEntry* entry, char mute)
{
(*entry)->mute(mute);
}
void AUD_setRelativeSequence(AUD_SEntry* entry, char relative)
{
(*entry)->setRelative(relative);
}
void AUD_updateSequenceSound(AUD_SEntry* entry, AUD_Sound* sound)
{
if(sound)
(*entry)->setSound(*sound);
else
(*entry)->setSound(AUD_Sound());
}
void AUD_setSequenceAnimData(AUD_SEntry* entry, AUD_AnimateablePropertyType type, int frame, float* data, char animated)
{
AUD_AnimateableProperty* prop = (*entry)->getAnimProperty(type);
if(animated)
prop->write(data, frame, 1);
else
prop->write(data);
}
void AUD_setSequencerAnimData(AUD_Sound* sequencer, AUD_AnimateablePropertyType type, int frame, float* data, char animated)
{
AUD_AnimateableProperty* prop = dynamic_cast<AUD_SequencerFactory*>(sequencer->get())->getAnimProperty(type);
if(animated)
prop->write(data, frame, 1);
else
prop->write(data);
}
void AUD_updateSequenceData(AUD_SEntry* entry, float volume_max, float volume_min,
float distance_max, float distance_reference, float attenuation,
float cone_angle_outer, float cone_angle_inner, float cone_volume_outer)
{
(*entry)->updateAll(volume_max, volume_min, distance_max, distance_reference, attenuation,
cone_angle_outer, cone_angle_inner, cone_volume_outer);
}
void AUD_updateSequencerData(AUD_Sound* sequencer, float speed_of_sound,
float factor, AUD_DistanceModel model)
{
AUD_SequencerFactory* f = dynamic_cast<AUD_SequencerFactory*>(sequencer->get());
f->setSpeedOfSound(speed_of_sound);
f->setDopplerFactor(factor);
f->setDistanceModel(model);
}
void AUD_setSequencerDeviceSpecs(AUD_Sound* sequencer)
{
dynamic_cast<AUD_SequencerFactory*>(sequencer->get())->setSpecs(AUD_device->getSpecs().specs);
}
void AUD_setSequencerSpecs(AUD_Sound* sequencer, AUD_Specs specs)
{
dynamic_cast<AUD_SequencerFactory*>(sequencer->get())->setSpecs(specs);
}
void AUD_seekSequencer(AUD_Handle* handle, float time)
{
#ifdef WITH_JACK
AUD_JackDevice* device = dynamic_cast<AUD_JackDevice*>(AUD_device.get());
if(device)
device->seekPlayback(time);
else
#endif
{
assert(handle);
(*handle)->seek(time);
}
}
float AUD_getSequencerPosition(AUD_Handle* handle)
{
#ifdef WITH_JACK
AUD_JackDevice* device = dynamic_cast<AUD_JackDevice*>(AUD_device.get());
if(device)
return device->getPlaybackPosition();
else
#endif
{
assert(handle);
return (*handle)->getPosition();
}
}
void AUD_startPlayback()
{
#ifdef WITH_JACK
AUD_JackDevice* device = dynamic_cast<AUD_JackDevice*>(AUD_device.get());
if(device)
device->startPlayback();
#endif
}
void AUD_stopPlayback()
{
#ifdef WITH_JACK
AUD_JackDevice* device = dynamic_cast<AUD_JackDevice*>(AUD_device.get());
if(device)
device->stopPlayback();
#endif
}
#ifdef WITH_JACK
void AUD_setSyncCallback(AUD_syncFunction function, void* data)
{
AUD_JackDevice* device = dynamic_cast<AUD_JackDevice*>(AUD_device.get());
if(device)
device->setSyncCallback(function, data);
}
#endif
int AUD_doesPlayback()
{
#ifdef WITH_JACK
AUD_JackDevice* device = dynamic_cast<AUD_JackDevice*>(AUD_device.get());
if(device)
return device->doesPlayback();
#endif
return -1;
}
int AUD_readSound(AUD_Sound* sound, sample_t* buffer, int length)
{
AUD_DeviceSpecs specs;
sample_t* buf;
AUD_Buffer aBuffer;
specs.rate = AUD_RATE_INVALID;
specs.channels = AUD_CHANNELS_MONO;
specs.format = AUD_FORMAT_INVALID;
AUD_Reference<AUD_IReader> reader = AUD_ChannelMapperFactory(*sound, specs).createReader();
int len = reader->getLength();
float samplejump = (float)len / (float)length;
float min, max;
2011-06-21 20:14:53 +00:00
bool eos;
for(int i = 0; i < length; i++)
{
len = floor(samplejump * (i+1)) - floor(samplejump * i);
if(aBuffer.getSize() < len * AUD_SAMPLE_SIZE(reader->getSpecs()))
{
aBuffer.resize(len * AUD_SAMPLE_SIZE(reader->getSpecs()));
buf = aBuffer.getBuffer();
}
2011-06-21 20:14:53 +00:00
reader->read(len, eos, buf);
2011-06-21 20:14:53 +00:00
if(eos)
{
length = i;
break;
}
max = min = *buf;
for(int j = 1; j < len; j++)
{
if(buf[j] < min)
min = buf[j];
if(buf[j] > max)
max = buf[j];
buffer[i * 2] = min;
buffer[i * 2 + 1] = max;
}
}
return length;
}
AUD_Sound* AUD_copy(AUD_Sound* sound)
{
return new AUD_Reference<AUD_IFactory>(*sound);
}
void AUD_freeHandle(AUD_Handle* handle)
{
delete handle;
}
void* AUD_createSet()
{
return new std::set<void*>();
}
void AUD_destroySet(void* set)
{
delete reinterpret_cast<std::set<void*>*>(set);
}
char AUD_removeSet(void* set, void* entry)
{
if(set)
return reinterpret_cast<std::set<void*>*>(set)->erase(entry);
return 0;
}
void AUD_addSet(void* set, void* entry)
{
if(entry)
reinterpret_cast<std::set<void*>*>(set)->insert(entry);
}
void* AUD_getSet(void* set)
{
if(set)
{
std::set<void*>* rset = reinterpret_cast<std::set<void*>*>(set);
if(!rset->empty())
{
std::set<void*>::iterator it = rset->begin();
void* result = *it;
rset->erase(it);
return result;
}
}
return NULL;
}
const char* AUD_mixdown(AUD_Sound* sound, unsigned int start, unsigned int length, unsigned int buffersize, const char* filename, AUD_DeviceSpecs specs, AUD_Container format, AUD_Codec codec, unsigned int bitrate)
{
try
{
AUD_SequencerFactory* f = dynamic_cast<AUD_SequencerFactory*>(sound->get());
f->setSpecs(specs.specs);
AUD_Reference<AUD_IReader> reader = f->createReader();
reader->seek(start);
AUD_Reference<AUD_IWriter> writer = AUD_FileWriter::createWriter(filename, specs, format, codec, bitrate);
AUD_FileWriter::writeReader(reader, writer, length, buffersize);
return NULL;
}
catch(AUD_Exception& e)
{
return e.str;
}
}