Files
blender/intern/cycles/kernel/sample/jitter.h
William Leeson 82cf25dfbf Cycles: Scrambling distance for the PMJ sampler
Adds scrambling distance to the PMJ sampler. This is based
on the work by Mathieu Menuet in D12318 who created the original
implementation for the Sobol sampler.

Reviewed By: brecht

Maniphest Tasks: T92181

Differential Revision: https://developer.blender.org/D12854
2021-10-27 14:21:15 +02:00

196 lines
5.5 KiB
C

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
CCL_NAMESPACE_BEGIN
ccl_device_inline uint32_t laine_karras_permutation(uint32_t x, uint32_t seed)
{
x += seed;
x ^= (x * 0x6c50b47cu);
x ^= x * 0xb82f1e52u;
x ^= x * 0xc7afe638u;
x ^= x * 0x8d22f6e6u;
return x;
}
ccl_device_inline uint32_t nested_uniform_scramble(uint32_t x, uint32_t seed)
{
x = reverse_integer_bits(x);
x = laine_karras_permutation(x, seed);
x = reverse_integer_bits(x);
return x;
}
ccl_device_inline uint cmj_hash(uint i, uint p)
{
i ^= p;
i ^= i >> 17;
i ^= i >> 10;
i *= 0xb36534e5;
i ^= i >> 12;
i ^= i >> 21;
i *= 0x93fc4795;
i ^= 0xdf6e307f;
i ^= i >> 17;
i *= 1 | p >> 18;
return i;
}
ccl_device_inline uint cmj_hash_simple(uint i, uint p)
{
i = (i ^ 61) ^ p;
i += i << 3;
i ^= i >> 4;
i *= 0x27d4eb2d;
return i;
}
ccl_device_inline float cmj_randfloat(uint i, uint p)
{
return cmj_hash(i, p) * (1.0f / 4294967808.0f);
}
ccl_device_inline float cmj_randfloat_simple(uint i, uint p)
{
return cmj_hash_simple(i, p) * (1.0f / (float)0xFFFFFFFF);
}
ccl_device_inline float cmj_randfloat_simple_dist(uint i, uint p, float d)
{
return cmj_hash_simple(i, p) * (d / (float)0xFFFFFFFF);
}
ccl_device float pmj_sample_1D(KernelGlobals kg, uint sample, uint rng_hash, uint dimension)
{
uint hash = rng_hash;
float jitter_x = 0.0f;
if (kernel_data.integrator.scrambling_distance < 1.0f) {
hash = kernel_data.integrator.seed;
jitter_x = cmj_randfloat_simple_dist(
dimension, rng_hash, kernel_data.integrator.scrambling_distance);
}
/* Perform Owen shuffle of the sample number to reorder the samples. */
#ifdef _SIMPLE_HASH_
const uint rv = cmj_hash_simple(dimension, hash);
#else /* Use a _REGULAR_HASH_. */
const uint rv = cmj_hash(dimension, hash);
#endif
#ifdef _XOR_SHUFFLE_
# warning "Using XOR shuffle."
const uint s = sample ^ rv;
#else /* Use _OWEN_SHUFFLE_ for reordering. */
const uint s = nested_uniform_scramble(sample, rv);
#endif
/* Based on the sample number a sample pattern is selected and offset by the dimension. */
const uint sample_set = s / NUM_PMJ_SAMPLES;
const uint d = (dimension + sample_set);
const uint dim = d % NUM_PMJ_PATTERNS;
/* The PMJ sample sets contain a sample with (x,y) with NUM_PMJ_SAMPLES so for 1D
* the x part is used for even dims and the y for odd. */
int index = 2 * ((dim >> 1) * NUM_PMJ_SAMPLES + (s % NUM_PMJ_SAMPLES)) + (dim & 1);
float fx = kernel_tex_fetch(__sample_pattern_lut, index);
#ifndef _NO_CRANLEY_PATTERSON_ROTATION_
/* Use Cranley-Patterson rotation to displace the sample pattern. */
# ifdef _SIMPLE_HASH_
float dx = cmj_randfloat_simple(d, hash);
# else
float dx = cmj_randfloat(d, hash);
# endif
/* Jitter sample locations and map back into [0 1]. */
fx = fx + dx + jitter_x;
fx = fx - floorf(fx);
#else
# warning "Not using Cranley-Patterson Rotation."
#endif
return fx;
}
ccl_device void pmj_sample_2D(KernelGlobals kg,
uint sample,
uint rng_hash,
uint dimension,
ccl_private float *x,
ccl_private float *y)
{
uint hash = rng_hash;
float jitter_x = 0.0f;
float jitter_y = 0.0f;
if (kernel_data.integrator.scrambling_distance < 1.0f) {
hash = kernel_data.integrator.seed;
jitter_x = cmj_randfloat_simple_dist(
dimension, rng_hash, kernel_data.integrator.scrambling_distance);
jitter_y = cmj_randfloat_simple_dist(
dimension + 1, rng_hash, kernel_data.integrator.scrambling_distance);
}
/* Perform a shuffle on the sample number to reorder the samples. */
#ifdef _SIMPLE_HASH_
const uint rv = cmj_hash_simple(dimension, hash);
#else /* Use a _REGULAR_HASH_. */
const uint rv = cmj_hash(dimension, hash);
#endif
#ifdef _XOR_SHUFFLE_
# warning "Using XOR shuffle."
const uint s = sample ^ rv;
#else /* Use _OWEN_SHUFFLE_ for reordering. */
const uint s = nested_uniform_scramble(sample, rv);
#endif
/* Based on the sample number a sample pattern is selected and offset by the dimension. */
const uint sample_set = s / NUM_PMJ_SAMPLES;
const uint d = dimension + sample_set;
uint dim = d % NUM_PMJ_PATTERNS;
int index = 2 * (dim * NUM_PMJ_SAMPLES + (s % NUM_PMJ_SAMPLES));
float fx = kernel_tex_fetch(__sample_pattern_lut, index);
float fy = kernel_tex_fetch(__sample_pattern_lut, index + 1);
#ifndef _NO_CRANLEY_PATTERSON_ROTATION_
/* Use Cranley-Patterson rotation to displace the sample pattern. */
# ifdef _SIMPLE_HASH_
float dx = cmj_randfloat_simple(d, hash);
float dy = cmj_randfloat_simple(d + 1, hash);
# else
float dx = cmj_randfloat(d, hash);
float dy = cmj_randfloat(d + 1, hash);
# endif
/* Jitter sample locations and map back to the unit square [0 1]x[0 1]. */
float sx = fx + dx + jitter_x;
float sy = fy + dy + jitter_y;
sx = sx - floorf(sx);
sy = sy - floorf(sy);
#else
# warning "Not using Cranley Patterson Rotation."
#endif
(*x) = sx;
(*y) = sy;
}
CCL_NAMESPACE_END